Octave:将矩阵导出到文件

Octave: exporting a matrix to a file

我猜对此有一个简单的解决方案,但我主要使用 Octave 交互式地求解方程组 online。问题是我当前问题的输出太大而无法轻松复制(手动或使用 copy/paste 复制到另一个文件),而且我不确定如何导出它。文本、LaTeX、.csv 或什至其他格式都可以,但导出它似乎很有用。

问题是屏幕打断了输出,因此很难 read/copy 没有错误。下面的代码(矩阵 C 是我想要导出的):

syms a b c q r s t x
A = [ 1 , -x*a, -x*(1-a); -x*b, 1, -x*(1-b); -x*c, -x*(1-c), 1]
Ainv = inv(A)

B = [t + q; t+ r; t+s]

C = Ainv*B

我试过保存命令,但它似乎没有做任何我能说的事情。例如:save temp.txt, C 只是重述了命令,但似乎没有指示保存到我的计算机(甚至没有机会执行 so/ask 权限以将其保存在某个地方)。

感谢任何帮助。谢谢!

@sym/latex所以很容易得到latex:

octave:> latex (C)
\left[\begin{matrix}\left(q + t\right) \left(\frac{a b x^{2}}{- a b x^{2} + 1} - \frac{\left(a b x^{2} - 1\right) \left(\frac{a x}{- a b x^{2} + 1} \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right) - x \left(- a + 1\right)\right) \left(- \frac{b x \left(- a c x^{2} - x \left(- c + 1\right)\right)}{- a b x^{2} + 1} + c x\right)}{- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)} + 1\right) + \left(r + t\right) \left(\frac{a x}{- a b x^{2} + 1} + \frac{\left(a b x^{2} - 1\right) \left(- a c x^{2} - x \left(- c + 1\right)\right) \left(\frac{a x}{- a b x^{2} + 1} \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right) - x \left(- a + 1\right)\right)}{\left(- a b x^{2} + 1\right) \left(- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)\right)}\right) - \frac{\left(s + t\right) \left(a b x^{2} - 1\right) \left(\frac{a x}{- a b x^{2} + 1} \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right) - x \left(- a + 1\right)\right)}{- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)}\\left(q + t\right) \left(\frac{b x}{- a b x^{2} + 1} - \frac{\left(a b x^{2} - 1\right) \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right) \left(- \frac{b x \left(- a c x^{2} - x \left(- c + 1\right)\right)}{- a b x^{2} + 1} + c x\right)}{\left(- a b x^{2} + 1\right) \left(- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)\right)}\right) + \left(r + t\right) \left(\frac{1}{- a b x^{2} + 1} + \frac{\left(a b x^{2} - 1\right) \left(- a c x^{2} - x \left(- c + 1\right)\right) \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right)}{\left(- a b x^{2} + 1\right)^{2} \left(- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)\right)}\right) - \frac{\left(s + t\right) \left(a b x^{2} - 1\right) \left(- b x^{2} \left(- a + 1\right) - x \left(- b + 1\right)\right)}{\left(- a b x^{2} + 1\right) \left(- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)\right)}\\frac{\left(q + t\right) \left(a b x^{2} - 1\right) \left(- \frac{b x \left(- a c x^{2} - x \left(- c + 1\right)\right)}{- a b x^{2} + 1} + c x\right)}{- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)} - \frac{\left(r + t\right) \left(a b x^{2} - 1\right) \left(- a c x^{2} - x \left(- c + 1\right)\right)}{\left(- a b x^{2} + 1\right) \left(- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)\right)} + \frac{\left(s + t\right) \left(a b x^{2} - 1\right)}{- x^{2} \left(a c x - c + 1\right) \left(b x \left(a - 1\right) + b - 1\right) + \left(a b x^{2} - 1\right) \left(c x^{2} \left(a - 1\right) + 1\right)}\end{matrix}\right]

可以渲染到