对较小尺寸数组的广播操作

Broadcast operation on array of smaller size

我需要提高对不同 shapes/sizes 的数组执行操作的性能。数组 pos 的形状为 (2, 500)xa, xb, ya, yb 数组的形状为 (30,).

下面MVCE中所示的操作将pos的两个维度分别与xa, xbya, yb相结合。

这可以应用 numpy 广播来完成吗?

import numpy as np

# Some random data
N = 30
xa, xb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)
ya, yb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)

# Grid
M = 500
ext = [xa.min(), xa.max(), ya.min(), ya.max()]
x, y = np.mgrid[ext[0]:ext[1]:complex(0, M), ext[2]:ext[3]:complex(0, M)]
pos = np.vstack([x.ravel(), y.ravel()])

# Apply broadcasting on the operation performed by this 'for' block?
vals = []
for p in zip(*pos):
    vals.append(np.sum(np.exp(-0.5 * (
        ((p[0] - xa) / xb)**2 + ((p[1] - ya) / yb)**2)) / (xb * yb)))

您可以使用 np.tile 并修改for循环如下

xa_tiled = np.tile(xa, (pos.shape[1],1))
xb_tiled = np.tile(xb, (pos.shape[1],1))
ya_tiled = np.tile(ya, (pos.shape[1],1))
yb_tiled = np.tile(yb, (pos.shape[1],1))

vals_ = np.exp(-0.5 * (
         ((pos[0].reshape(pos.shape[1],1) - xa_tiled) / xb_tiled)**2 + ((pos[1].reshape(pos.shape[1],1) - ya_tiled) / yb_tiled)**2)) / (xb_tiled * yb_tiled)
vals_ = vals_.sum(axis=1)

解释:

  1. 在每次迭代中,您将使用 pos[0][i] 和 pos[1][i] 并对 xa、xb、ya、yb 进行运算。
  2. Tile 复制了这 250000 次中的所有 4 次,即 pos 的形状 [1] 或迭代次数。
  3. 我们还需要重塑 pos[0] 和 pos[1] 并将它们设为 2D 以使操作有效。

时间详情: 在我的机器上,矢量化代码大约需要 0.20 秒,而非矢量化代码大约需要 3 秒。下面是重现的代码:

import numpy as np
import time

# Some random data
N = 30
xa, xb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)
ya, yb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)

# Grid
M = 500
ext = [xa.min(), xa.max(), ya.min(), ya.max()]
x, y = np.mgrid[ext[0]:ext[1]:complex(0, M), ext[2]:ext[3]:complex(0, M)]
pos = np.vstack([x.ravel(), y.ravel()])

# Apply broadcasting on the operation performed by this 'for' block?

start = time.time()
for i in range(10):
    vals = []
    for p in zip(*pos):
        vals.append(np.sum(np.exp(-0.5 * (
            ((p[0] - xa) / xb)**2 + ((p[1] - ya) / yb)**2)) / (xb * yb)))
stop = time.time()
print( (stop-start)/10)        

start = time.time()

for i in range(10):
    xa_tiled = np.tile(xa, (pos.shape[1],1))
    xb_tiled = np.tile(xb, (pos.shape[1],1))
    ya_tiled = np.tile(ya, (pos.shape[1],1))
    yb_tiled = np.tile(yb, (pos.shape[1],1))

    vals_ = np.exp(-0.5 * (
            ((pos[0,:].reshape(pos.shape[1],1) - xa_tiled) / xb_tiled)**2 + ((pos[1].reshape(pos.shape[1],1) - ya_tiled) / yb_tiled)**2)) / (xb_tiled * yb_tiled)
    vals_ = vals_.sum(axis=1)
stop = time.time()
print( (stop-start)/10)        

print(np.allclose(vals_, np.array(vals))==True)