read.csv 在 R 中阅读日期不同
read.csv in R reading dates differently
我有两个非常相似的 csv 文件。从相同来源以相同格式下载的 2 种不同股票的股票价格。但是,read.csv 在 R 中的解读方式不同。
> tab1=read.csv(path1)
> tab2=read.csv(path2)
> head(tab1)
Date Open High Low Close Volume Adj.Close
1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
> head(tab2)
Date Open High Low Close Volume Adj.Close
1 12/1/2014 73.39 75.20 71.75 72.29 1561400 71.92211
2 11/3/2014 69.28 74.92 67.88 73.74 1421600 72.97650
3 10/1/2014 66.18 74.95 63.42 69.21 1775400 68.49341
4 9/2/2014 68.34 68.57 65.49 66.32 1249200 65.63333
5 8/1/2014 67.45 68.99 65.88 68.26 1655400 67.20743
6 7/1/2014 64.07 69.50 63.09 67.46 1733600 66.41976
如果我尝试在 read.csv 中使用 colClasses,那么第二个 table 的日期读取不正确。
> tab1=read.csv(path1,colClasses=c("Date",rep("numeric",6)))
> tab2=read.csv(path2,colClasses=c("Date",rep("numeric",6)))
> head(tab1)
Date Open High Low Close Volume Adj.Close
1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
> head(tab2)
Date Open High Low Close Volume Adj.Close
1 0012-01-20 73.39 75.20 71.75 72.29 1561400 71.92211
2 0011-03-20 69.28 74.92 67.88 73.74 1421600 72.97650
3 0010-01-20 66.18 74.95 63.42 69.21 1775400 68.49341
4 0009-02-20 68.34 68.57 65.49 66.32 1249200 65.63333
5 0008-01-20 67.45 68.99 65.88 68.26 1655400 67.20743
6 0007-01-20 64.07 69.50 63.09 67.46 1733600 66.41976
不确定如何在不附加 .csv 文件的情况下重现此问题。我附上了这两个文件的快照。任何帮助将不胜感激。
谢谢
这可以通过读入日期作为字符向量然后调用 strptime()
inside transform()
:
来解决
transform(read.csv(path2,colClasses=c('character',rep('numeric',6))),Date=as.Date(strptime(Date,'%m/%d/%Y')));
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 73.39 75.20 71.75 72.29 1561400 71.92211
## 2 2014-11-03 69.28 74.92 67.88 73.74 1421600 72.97650
## 3 2014-10-01 66.18 74.95 63.42 69.21 1775400 68.49341
## 4 2014-09-02 68.34 68.57 65.49 66.32 1249200 65.63333
## 5 2014-08-01 67.45 68.99 65.88 68.26 1655400 67.20743
## 6 2014-07-01 64.07 69.50 63.09 67.46 1733600 66.41976
编辑:您可以尝试 "detect" 使用您自己的假设动态地设置日期格式,但这只会与您的假设一样可靠:
readStockData <- function(path) {
tab <- read.csv(path,colClasses=c('character',rep('numeric',6)));
tab$Date <- as.Date(tab$Date,if (grepl('^\d+/\d+/\d+$',tab$Date[1])) '%m/%d/%Y' else '%Y-%m-%d');
tab;
};
readStockData(path1);
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
## 2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
## 3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
## 4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
## 5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
## 6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
readStockData(path2);
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 73.39 75.20 71.75 72.29 1561400 71.92211
## 2 2014-11-03 69.28 74.92 67.88 73.74 1421600 72.97650
## 3 2014-10-01 66.18 74.95 63.42 69.21 1775400 68.49341
## 4 2014-09-02 68.34 68.57 65.49 66.32 1249200 65.63333
## 5 2014-08-01 67.45 68.99 65.88 68.26 1655400 67.20743
## 6 2014-07-01 64.07 69.50 63.09 67.46 1733600 66.41976
在上面我假设文件中至少有一条记录并且所有记录都使用相同的日期格式,因此第一个日期值 (tab$Date[1]
) 可用于检测。
我有两个非常相似的 csv 文件。从相同来源以相同格式下载的 2 种不同股票的股票价格。但是,read.csv 在 R 中的解读方式不同。
> tab1=read.csv(path1)
> tab2=read.csv(path2)
> head(tab1)
Date Open High Low Close Volume Adj.Close
1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
> head(tab2)
Date Open High Low Close Volume Adj.Close
1 12/1/2014 73.39 75.20 71.75 72.29 1561400 71.92211
2 11/3/2014 69.28 74.92 67.88 73.74 1421600 72.97650
3 10/1/2014 66.18 74.95 63.42 69.21 1775400 68.49341
4 9/2/2014 68.34 68.57 65.49 66.32 1249200 65.63333
5 8/1/2014 67.45 68.99 65.88 68.26 1655400 67.20743
6 7/1/2014 64.07 69.50 63.09 67.46 1733600 66.41976
如果我尝试在 read.csv 中使用 colClasses,那么第二个 table 的日期读取不正确。
> tab1=read.csv(path1,colClasses=c("Date",rep("numeric",6)))
> tab2=read.csv(path2,colClasses=c("Date",rep("numeric",6)))
> head(tab1)
Date Open High Low Close Volume Adj.Close
1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
> head(tab2)
Date Open High Low Close Volume Adj.Close
1 0012-01-20 73.39 75.20 71.75 72.29 1561400 71.92211
2 0011-03-20 69.28 74.92 67.88 73.74 1421600 72.97650
3 0010-01-20 66.18 74.95 63.42 69.21 1775400 68.49341
4 0009-02-20 68.34 68.57 65.49 66.32 1249200 65.63333
5 0008-01-20 67.45 68.99 65.88 68.26 1655400 67.20743
6 0007-01-20 64.07 69.50 63.09 67.46 1733600 66.41976
不确定如何在不附加 .csv 文件的情况下重现此问题。我附上了这两个文件的快照。任何帮助将不胜感激。
谢谢
这可以通过读入日期作为字符向量然后调用 strptime()
inside transform()
:
transform(read.csv(path2,colClasses=c('character',rep('numeric',6))),Date=as.Date(strptime(Date,'%m/%d/%Y')));
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 73.39 75.20 71.75 72.29 1561400 71.92211
## 2 2014-11-03 69.28 74.92 67.88 73.74 1421600 72.97650
## 3 2014-10-01 66.18 74.95 63.42 69.21 1775400 68.49341
## 4 2014-09-02 68.34 68.57 65.49 66.32 1249200 65.63333
## 5 2014-08-01 67.45 68.99 65.88 68.26 1655400 67.20743
## 6 2014-07-01 64.07 69.50 63.09 67.46 1733600 66.41976
编辑:您可以尝试 "detect" 使用您自己的假设动态地设置日期格式,但这只会与您的假设一样可靠:
readStockData <- function(path) {
tab <- read.csv(path,colClasses=c('character',rep('numeric',6)));
tab$Date <- as.Date(tab$Date,if (grepl('^\d+/\d+/\d+$',tab$Date[1])) '%m/%d/%Y' else '%Y-%m-%d');
tab;
};
readStockData(path1);
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 158.35 162.92 157.12 157.12 2719100 156.1488
## 2 2014-11-03 153.14 160.86 152.98 160.09 2243400 159.1004
## 3 2014-10-01 141.16 154.44 130.60 153.77 3825900 152.0036
## 4 2014-09-02 143.30 147.87 140.66 141.68 2592900 140.0525
## 5 2014-08-01 140.15 145.39 138.43 144.00 2027100 142.3459
## 6 2014-07-01 143.41 146.43 140.60 140.89 2131100 138.4461
readStockData(path2);
## Date Open High Low Close Volume Adj.Close
## 1 2014-12-01 73.39 75.20 71.75 72.29 1561400 71.92211
## 2 2014-11-03 69.28 74.92 67.88 73.74 1421600 72.97650
## 3 2014-10-01 66.18 74.95 63.42 69.21 1775400 68.49341
## 4 2014-09-02 68.34 68.57 65.49 66.32 1249200 65.63333
## 5 2014-08-01 67.45 68.99 65.88 68.26 1655400 67.20743
## 6 2014-07-01 64.07 69.50 63.09 67.46 1733600 66.41976
在上面我假设文件中至少有一条记录并且所有记录都使用相同的日期格式,因此第一个日期值 (tab$Date[1]
) 可用于检测。