使用列值作为 spark DataFrame 函数的参数
Using a column value as a parameter to a spark DataFrame function
考虑以下 DataFrame:
#+------+---+
#|letter|rpt|
#+------+---+
#| X| 3|
#| Y| 1|
#| Z| 2|
#+------+---+
可以使用以下代码创建:
df = spark.createDataFrame([("X", 3),("Y", 1),("Z", 2)], ["letter", "rpt"])
假设我想将每一行重复列 rpt
中指定的次数,就像在 中一样。
一种方法是使用以下 pyspark-sql
查询将我的 复制到该问题:
query = """
SELECT *
FROM
(SELECT DISTINCT *,
posexplode(split(repeat(",", rpt), ",")) AS (index, col)
FROM df) AS a
WHERE index > 0
"""
query = query.replace("\n", " ") # replace newlines with spaces, avoid EOF error
spark.sql(query).drop("col").sort('letter', 'index').show()
#+------+---+-----+
#|letter|rpt|index|
#+------+---+-----+
#| X| 3| 1|
#| X| 3| 2|
#| X| 3| 3|
#| Y| 1| 1|
#| Z| 2| 1|
#| Z| 2| 2|
#+------+---+-----+
这有效并产生了正确的答案。但是,我无法使用 DataFrame API 函数复制此行为。
我试过了:
import pyspark.sql.functions as f
df.select(
f.posexplode(f.split(f.repeat(",", f.col("rpt")), ",")).alias("index", "col")
).show()
但这会导致:
TypeError: 'Column' object is not callable
为什么我可以将该列作为输入传递给查询中的 repeat
,而不是来自 API?有没有办法使用 spark DataFrame 函数复制此行为?
一种选择是使用 pyspark.sql.functions.expr
,它允许您使用列值作为 spark-sql 函数的输入。
基于@user8371915 的 我发现以下工作:
from pyspark.sql.functions import expr
df.select(
'*',
expr('posexplode(split(repeat(",", rpt), ","))').alias("index", "col")
).where('index > 0').drop("col").sort('letter', 'index').show()
#+------+---+-----+
#|letter|rpt|index|
#+------+---+-----+
#| X| 3| 1|
#| X| 3| 2|
#| X| 3| 3|
#| Y| 1| 1|
#| Z| 2| 1|
#| Z| 2| 2|
#+------+---+-----+
考虑以下 DataFrame:
#+------+---+
#|letter|rpt|
#+------+---+
#| X| 3|
#| Y| 1|
#| Z| 2|
#+------+---+
可以使用以下代码创建:
df = spark.createDataFrame([("X", 3),("Y", 1),("Z", 2)], ["letter", "rpt"])
假设我想将每一行重复列 rpt
中指定的次数,就像在
一种方法是使用以下 pyspark-sql
查询将我的
query = """
SELECT *
FROM
(SELECT DISTINCT *,
posexplode(split(repeat(",", rpt), ",")) AS (index, col)
FROM df) AS a
WHERE index > 0
"""
query = query.replace("\n", " ") # replace newlines with spaces, avoid EOF error
spark.sql(query).drop("col").sort('letter', 'index').show()
#+------+---+-----+
#|letter|rpt|index|
#+------+---+-----+
#| X| 3| 1|
#| X| 3| 2|
#| X| 3| 3|
#| Y| 1| 1|
#| Z| 2| 1|
#| Z| 2| 2|
#+------+---+-----+
这有效并产生了正确的答案。但是,我无法使用 DataFrame API 函数复制此行为。
我试过了:
import pyspark.sql.functions as f
df.select(
f.posexplode(f.split(f.repeat(",", f.col("rpt")), ",")).alias("index", "col")
).show()
但这会导致:
TypeError: 'Column' object is not callable
为什么我可以将该列作为输入传递给查询中的 repeat
,而不是来自 API?有没有办法使用 spark DataFrame 函数复制此行为?
一种选择是使用 pyspark.sql.functions.expr
,它允许您使用列值作为 spark-sql 函数的输入。
基于@user8371915 的
from pyspark.sql.functions import expr
df.select(
'*',
expr('posexplode(split(repeat(",", rpt), ","))').alias("index", "col")
).where('index > 0').drop("col").sort('letter', 'index').show()
#+------+---+-----+
#|letter|rpt|index|
#+------+---+-----+
#| X| 3| 1|
#| X| 3| 2|
#| X| 3| 3|
#| Y| 1| 1|
#| Z| 2| 1|
#| Z| 2| 2|
#+------+---+-----+