无法在随机森林回归器 python sklearn 上调用拟合函数
Unable to call the fit function on randomforest regressor python sklearn
我无法在 RandomForestRegressor 上调用拟合函数,甚至智能感知也只显示预测和一些其他参数。下面是我的代码、回溯调用和显示智能感知内容的图像。
import pandas
import numpy as np
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestRegressor
def predict():
Fvector = 'C:/Users/Oussema/Desktop/Cred_Data/VEctors/FinalFeatureVector.csv'
data = np.genfromtxt(Fvector, dtype=float, delimiter=',', names=True)
AnnotArr = np.array(data['CredAnnot']) #this is a 1D array containig the ground truth (50000 rows)
TempTestArr = np.array([data['GrammarV'],data['TweetSentSc'],data['URLState']]) #this is the features vector the shape is (3,50000) the values range is [0-1]
FeatureVector = TempTestArr.transpose() #i used the transpose method to get the shape (50000,3)
RF_model = RandomForestRegressor(n_estimators=20, max_features = 'auto', n_jobs = -1)
RF_model.fit(FeatureVector,AnnotArr)
print(RF_model.oob_score_)
predict()
智能感知内容:
[1]: https://i.stack.imgur.com/XweOo.png
回溯调用
Traceback (most recent call last):
File "C:\Users\Oussema\source\repos\Regression_Models\Regression_Models\Random_forest_TCA.py", line 15, in <module>
predict()
File "C:\Users\Oussema\source\repos\Regression_Models\Regression_Models\Random_forest_TCA.py", line 14, in predict
print(RF_model.oob_score_)
AttributeError: 'RandomForestRegressor' object has no attribute 'oob_score_'
初始化 RandomForestRegressor 时需要将 oob_score
参数设置为 True
。
oob_score : bool, optional (default=False)
whether to use out-of-bag samples to estimate the R^2 on unseen data.
所以属性 oob_score_
只有在您这样做时才可用:
def predict():
....
....
RF_model = RandomForestRegressor(n_estimators=20,
max_features = 'auto',
n_jobs = -1,
oob_score=True) #<= This is what you want
....
....
print(RF_model.oob_score_)
我无法在 RandomForestRegressor 上调用拟合函数,甚至智能感知也只显示预测和一些其他参数。下面是我的代码、回溯调用和显示智能感知内容的图像。
import pandas
import numpy as np
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestRegressor
def predict():
Fvector = 'C:/Users/Oussema/Desktop/Cred_Data/VEctors/FinalFeatureVector.csv'
data = np.genfromtxt(Fvector, dtype=float, delimiter=',', names=True)
AnnotArr = np.array(data['CredAnnot']) #this is a 1D array containig the ground truth (50000 rows)
TempTestArr = np.array([data['GrammarV'],data['TweetSentSc'],data['URLState']]) #this is the features vector the shape is (3,50000) the values range is [0-1]
FeatureVector = TempTestArr.transpose() #i used the transpose method to get the shape (50000,3)
RF_model = RandomForestRegressor(n_estimators=20, max_features = 'auto', n_jobs = -1)
RF_model.fit(FeatureVector,AnnotArr)
print(RF_model.oob_score_)
predict()
智能感知内容: [1]: https://i.stack.imgur.com/XweOo.png
回溯调用
Traceback (most recent call last):
File "C:\Users\Oussema\source\repos\Regression_Models\Regression_Models\Random_forest_TCA.py", line 15, in <module>
predict()
File "C:\Users\Oussema\source\repos\Regression_Models\Regression_Models\Random_forest_TCA.py", line 14, in predict
print(RF_model.oob_score_)
AttributeError: 'RandomForestRegressor' object has no attribute 'oob_score_'
初始化 RandomForestRegressor 时需要将 oob_score
参数设置为 True
。
oob_score : bool, optional (default=False)
whether to use out-of-bag samples to estimate the R^2 on unseen data.
所以属性 oob_score_
只有在您这样做时才可用:
def predict():
....
....
RF_model = RandomForestRegressor(n_estimators=20,
max_features = 'auto',
n_jobs = -1,
oob_score=True) #<= This is what you want
....
....
print(RF_model.oob_score_)