PySpark - "compressing" 将多行客户合并为一行,删除空白

PySpark - "compressing" multiple-row customers into one row, deleting blanks

所以我目前有一个如下所示的数据框:

+-------------+----------------+---------------+------------------+-----------------+
| customer_id | init_base_date | init_end_date | reinit_base_date | reinit_end_date |
+-------------+----------------+---------------+------------------+-----------------+
| ...         |                |               |                  |                 |
| A           | 2015-07-30     |               |                  |                 |
| A           |                | 2016-07-24    |                  |                 |
| B           | 2015-07-10     |               |                  |                 |
| B           |                | 2015-10-05    |                  |                 |
| B           |                |               | 2016-01-09       |                 |
| B           |                |               |                  | 2016-07-04      |
| C           | 2015-05-13     |               |                  |                 |
| C           |                | 2015-08-09    |                  |                 |
| ...         |                |               |                  |                 |
+-------------+----------------+---------------+------------------+-----------------+

而且我确实需要将其转换为以下形式:

+-------------+----------------+---------------+------------------+-----------------+
| customer_id | init_base_date | init_end_date | reinit_base_date | reinit_end_date |
+-------------+----------------+---------------+------------------+-----------------+
| ...         |                |               |                  |                 |
| A           | 2015-07-30     | 2016-07-24    |                  |                 |
| B           | 2015-07-10     | 2015-10-05    | 2016-01-09       | 2016-07-04      |
| C           | 2015-05-13     | 2015-08-09    |                  |                 |
| ...         |                |               |                  |                 |
+-------------+----------------+---------------+------------------+-----------------+

我能想到几个非常繁琐的方法来完成上述操作,但我想知道是否有快速有效的方法(也许使用 windows?我只使用 PySpark 一个月现在,肯定还是新手)。

如果您显示的那些空单元格实际上是 nulls(与空字符串相反),您可以使用 pyspark.sql.functions.first() 作为 groupBy 中的聚合函数。关键是将first()ignorenulls参数设置为True(默认为False)。

import pyspark.sql.functions as f
cols = [c for c in df.columns if c != 'customer_id']
df.groupBy('customer_id').agg(*[f.first(c, True).alias(c) for c in cols]).show()
#+-----------+--------------+-------------+----------------+---------------+
#|customer_id|init_base_date|init_end_date|reinit_base_date|reinit_end_date|
#+-----------+--------------+-------------+----------------+---------------+
#|          A|    2015-07-30|   2016-07-24|            null|           null|
#|          B|    2015-07-10|   2015-10-05|      2016-01-09|     2016-07-04|
#|          C|    2015-05-13|   2015-08-09|            null|           null|
#+-----------+--------------+-------------+----------------+---------------+

如果这些空白值实际上是空字符串,您可以先 然后按照上述方法操作。然后您可以(可选)用空格替换 null 值。

from functools import reduce  # for python3
cols = [c for c in df.columns if c != 'customer_id']
df = reduce(lambda df, c: df.withColumn(c, f.when(f.col(c) != '', f.col(c))), cols, df)
df = df.groupBy('customer_id').agg(*[f.first(c, True).alias(c) for c in cols])
df.na.fill('').show()  # fill nulls with blanks
#+-----------+--------------+-------------+----------------+---------------+
#|customer_id|init_base_date|init_end_date|reinit_base_date|reinit_end_date|
#+-----------+--------------+-------------+----------------+---------------+
#|          A|    2015-07-30|   2016-07-24|                |               |
#|          B|    2015-07-10|   2015-10-05|      2016-01-09|     2016-07-04|
#|          C|    2015-05-13|   2015-08-09|                |               |
#+-----------+--------------+-------------+----------------+---------------+