按跨多个变量分隔的名称汇总数据

Summarizing data by name separated across multiple variables

我正在尝试计算每位球员的总进球数、主要助攻数和次要助攻数。我的问题是我无法理解这样做的逻辑,因为我想按(球员姓名)总结的数据在三个变量(目标、主要助攻和次要助攻)中列出

这是我的可重现数据(来自 dput(),很抱歉造成混乱)。

mydata <- structure(list(primary_assist = c("Dmitry Gilyazitdinov", "Evgeny Orlov", 
"Anton Burdasov", "Sergei Kalinin", "Stanislav Solovyov", "Vasily Streltsov", 
NA, "Bogdan Potekhin", "Bogdan Potekhin", "Vasily Streltsov", 
"Vasily Streltsov", "Viktor Postnikov", "Danil Kaskov", NA, NA, 
"Artemy Panarin"), secondary_assist = c("Andrei Badrutdinov", 
NA, NA, NA, "Danil Gubarev", "Nikita Manukhov", NA, "Evgeny Grigorenko", 
"Daniil Apalkov", "Ivan Boiko", NA, "Viktor Antipin", "Vitaly Sychov", 
NA, NA, "Stanislav Levin"), goal = c("Vitaly Kropachyov", "Dmitry Kozlov", 
"Stanislav Solovyov", "Kirill Polyansky", "Anton Burdasov", "Ilya Solodov", 
"Alexander Antropov", "Daniil Apalkov", "Evgeny Grigorenko", 
"Alexander Antropov", "Alexander Antropov", "Evgeny Grigorenko", 
"Denis Belonogov", "Vitaly Sychov", "Alexander Streltsov", "Pyotr Kopyttsov"
), team = c("Belye Medvedi", "Omskie Yastreby", "Belye Medvedi", 
"Omskie Yastreby", "Belye Medvedi", "Avto", "Avto", "Stalnye Lisy", 
"Stalnye Lisy", "Avto", "Avto", "Stalnye Lisy", "Avto", "Avto", 
"Avto", "Russkie Vityazi"), game_strength = c("PP", "EV", "EV", 
"EV", "EV", "PP", "SO", "EV", "PP", "PP", "EV", "PP", "PP", "EV", 
"PP", "EV"), season = c("2009-10", "2009-10", "2009-10", "2009-10", 
"2009-10", "2009-10", "2009-10", "2009-10", "2009-10", "2009-10", 
"2009-10", "2009-10", "2009-10", "2009-10", "2009-10", "2009-10"
)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
-16L), .Names = c("primary_assist", "secondary_assist", "goal", 
"team", "game_strength", "season"))
mydata
#> # A tibble: 16 x 6
#>    primary_assist       secondary_assist  goal  team  game_strength season
#>    <chr>                <chr>             <chr> <chr> <chr>         <chr> 
#>  1 Dmitry Gilyazitdinov Andrei Badrutdin~ Vita~ Bely~ PP            2009-~
#>  2 Evgeny Orlov         <NA>              Dmit~ Omsk~ EV            2009-~
#>  3 Anton Burdasov       <NA>              Stan~ Bely~ EV            2009-~
#>  4 Sergei Kalinin       <NA>              Kiri~ Omsk~ EV            2009-~
#>  5 Stanislav Solovyov   Danil Gubarev     Anto~ Bely~ EV            2009-~
#>  6 Vasily Streltsov     Nikita Manukhov   Ilya~ Avto  PP            2009-~
#>  7 <NA>                 <NA>              Alex~ Avto  SO            2009-~
#>  8 Bogdan Potekhin      Evgeny Grigorenko Dani~ Stal~ EV            2009-~
#>  9 Bogdan Potekhin      Daniil Apalkov    Evge~ Stal~ PP            2009-~
#> 10 Vasily Streltsov     Ivan Boiko        Alex~ Avto  PP            2009-~
#> 11 Vasily Streltsov     <NA>              Alex~ Avto  EV            2009-~
#> 12 Viktor Postnikov     Viktor Antipin    Evge~ Stal~ PP            2009-~
#> 13 Danil Kaskov         Vitaly Sychov     Deni~ Avto  PP            2009-~
#> 14 <NA>                 <NA>              Vita~ Avto  EV            2009-~
#> 15 <NA>                 <NA>              Alex~ Avto  PP            2009-~
#> 16 Artemy Panarin       Stanislav Levin   Pyot~ Russ~ EV            2009-~

所以,我想统计每个球员的进球数、主要助攻数和次要助攻数,然后每个球员有 1 行。假设名字 "Artemy Panarin" 在目标中出现 1 次,在主要助攻中出现 0 次,在辅助助攻中出现 2 次,我的输出将如下所示:

tibble::tibble(name = c("Artemy Panarin", "Stanislav Levin", "Danil Kaskov"), team = c("Russkie Vityazi", "Russkie Vityazi", "Avto"), goals = c(1, 1, 0), primary_assists = c(0, 0, 1), secondary_assists = c(2, 0, 0))
#> # A tibble: 3 x 5
#>   name            team            goals primary_assists secondary_assists
#>   <chr>           <chr>           <dbl>           <dbl>             <dbl>
#> 1 Artemy Panarin  Russkie Vityazi  1.00            0                 2.00
#> 2 Stanislav Levin Russkie Vityazi  1.00            0                 0   
#> 3 Danil Kaskov    Avto             0               1.00              0

这有意义吗?有任何想法吗?首选 Tidyverse 解决方案。谢谢!

获得结果的一种方法是使用 gather()/spread() 除了您的汇总策略来重塑您的数据。

library(tidyverse)

scoring_summary <- mydata %>%
    select(primary_assist:team) %>%
    gather("key", "player", -team) %>%
    group_by(player) %>%
    count(key) %>%
    spread(key, n)

# convert NAs to 0
scoring_summary[is.na(scoring_summary)] <- 0

scoring_summary

# A tibble: 28 x 4
# Groups:   player [28]
player               goal primary_assist secondary_assist
<chr>               <dbl>          <dbl>            <dbl>
1 Alexander Antropov      3              0                0
2 Alexander Streltsov     1              0                0
3 Andrei Badrutdinov      0              0                1
4 Anton Burdasov          1              1                0
5 Artemy Panarin          0              1                0
6 Bogdan Potekhin         0              2                0
7 Daniil Apalkov          1              0                1
8 Danil Gubarev           0              0                1
9 Danil Kaskov            0              1                0
10 Denis Belonogov        1              0                0

count() 正在做与您最初尝试 summarise(count(goals)

相同的事情

我们可以gather到'long'格式,按'name'、'team'和'key'列分组(来自gather) , summarise 获取计数并 spread 返回 'wide' 格式

library(tidyverse)
gather(mydata, key, name, primary_assist:goal) %>% 
     group_by(name, team, key) %>% 
     summarise(n = n()) %>% 
     spread(key, n, fill = 0)
# A tibble: 30 x 5
# Groups:   name, team [30]
#   name                team             goal primary_assist secondary_assist
#   <chr>               <chr>           <dbl>          <dbl>            <dbl>
# 1 Alexander Antropov  Avto                3              0                0
# 2 Alexander Streltsov Avto                1              0                0
# 3 Andrei Badrutdinov  Belye Medvedi       0              0                1
# 4 Anton Burdasov      Belye Medvedi       1              1                0
# 5 Artemy Panarin      Russkie Vityazi     0              1                0
# 6 Bogdan Potekhin     Stalnye Lisy        0              2                0
# 7 Daniil Apalkov      Stalnye Lisy        1              0                1
# 8 Danil Gubarev       Belye Medvedi       0              0                1
# 9 Danil Kaskov        Avto                0              1                0
#10 Denis Belonogov     Avto                1              0                0
# ... with 20 more rows

您可以使用收集和传播。先把进球数和助攻数列汇总成一个"key",然后按key和球员分组。您可以稍后将 NA 转换为 0

library(tidyverse)

mydata_tidy <- mydata %>% 
  gather(key = "key", value = "player", primary_assist, secondary_assist, goal) %>% 
  na.omit() 
mydata_tidy %>% 
  group_by(key, player) %>% 
  summarize(count = n()) %>% 
  spread(key, count) %>% 
  filter(player %in% c("Artemy Panarin", "Stanislav Levin", "Danil Kaskov"))
#> # A tibble: 3 x 4
#>   player           goal primary_assist secondary_assist
#>   <chr>           <int>          <int>            <int>
#> 1 Artemy Panarin     NA              1               NA
#> 2 Danil Kaskov       NA              1               NA
#> 3 Stanislav Levin    NA             NA                1

reprex 创建于 2018-07-18 包 (v0.2.0).