kotlin 协程 - 在 运行 阻塞中使用主线程

kotlin coroutines - use main thread in run blocking

我正在尝试执行以下代码:

 val jobs = listOf(...)
 return runBlocking(CommonPool) {
    val executed = jobs.map {
        async { it.execute() }
    }.toTypedArray()
    awaitAll(*executed)
 }

其中 jobs 是一些 Supplier 的列表 - 在同步世界中,这应该只是创建,例如,整数列表。 一切正常,但问题是主线程没有被利用。 YourKit 的以下屏幕截图:

所以,问题是 - 我怎样才能同时利用主线程?

我想 runBlocking 是这里的问题,但是还有其他方法可以得到相同的结果吗?使用 Java 并行流看起来好多了,但主线程仍未完全利用(任务完全独立)。

更新

好吧,也许我告诉你的事情太少了。 在看了 Vankant Subramaniam 的演讲后,我的问题出现了一段时间:https://youtu.be/0hQvWIdwnw4。 我需要最高性能,没有 IO,没有 Ui 等。只有计算。只有请求,我需要使用我所有可用的资源。

我的一个想法是将 paralleizm 设置为线程数 + 1,但我认为这很愚蠢。

仅仅因为在这个显式线程上没有工作 运行 并不意味着设备没有 运行 在同一核心上连接其他线程。

让您的 MainThread 闲置实际上更好,这将使您的 UI 反应更快。

首先,我想理解利用主线程通常没有任何实际用途。

如果您的应用程序是完全异步的,那么您将只有一个(主)线程被阻塞。这个线程确实消耗了一些内存,给调度器增加了一些额外的压力,但是对性能的增加影响可以忽略不计,甚至无法衡量。

在实际 java 世界中,几乎不可能在 JVM 中拥有固定数量的线程。有系统线程(gc),有nio线程等

一个线程没有什么不同。只要应用程序中的线程数不会随着负载的增加而不受限制地增长,就可以了。


回到原来的问题。

我不认为有一种简洁的方法可以在这种并行处理任务中利用主线程。

例如,您可以执行以下操作:

data class Job(val res: Int) {
    fun execute(): Int {
        Thread.sleep(100)
        println("execute $res in ${Thread.currentThread().name}")
        return res
    }
}

fun main() {
    val jobs = (1..100).map { Job(it) }
    val resultChannel = Channel<Int>(Channel.UNLIMITED)
    val mainInputChannel = Channel<Job>()

    val workers = (1..10).map {
        actor<Job>(CommonPool) {
            for (j in channel) {
                resultChannel.send(j.execute())
            }
        }
    }

    val res: Deferred<List<Int>> = async(CommonPool) {
        val allChannels = (listOf(mainInputChannel) + workers)

        jobs.forEach { job ->
            select {
                allChannels.forEach {
                    it.onSend(job) {}
                }
            }
        }

        allChannels.forEach { it.close() }
        (1..jobs.size).map { resultChannel.receive() }
    }

    runBlocking {
        for (j in mainInputChannel) {
            resultChannel.send(j.execute())
        }
    }

    runBlocking {
        res.await().forEach { println(it) }
    }
}

基本上,是一个简单的 producer/consumer 实现,其中主线程充当消费者之一。但这会导致很多样板文件。

输出:

execute 1 in main @coroutine#12
execute 5 in ForkJoinPool.commonPool-worker-1 @coroutine#4
execute 6 in ForkJoinPool.commonPool-worker-2 @coroutine#5
execute 7 in ForkJoinPool.commonPool-worker-7 @coroutine#6
execute 2 in ForkJoinPool.commonPool-worker-6 @coroutine#1
execute 8 in ForkJoinPool.commonPool-worker-4 @coroutine#7
execute 4 in ForkJoinPool.commonPool-worker-5 @coroutine#3
execute 3 in ForkJoinPool.commonPool-worker-3 @coroutine#2
execute 12 in main @coroutine#12
execute 10 in ForkJoinPool.commonPool-worker-7 @coroutine#9
execute 15 in ForkJoinPool.commonPool-worker-5 @coroutine#6
execute 11 in ForkJoinPool.commonPool-worker-3 @coroutine#10
execute 16 in ForkJoinPool.commonPool-worker-6 @coroutine#1
execute 9 in ForkJoinPool.commonPool-worker-1 @coroutine#8
execute 14 in ForkJoinPool.commonPool-worker-4 @coroutine#5
execute 13 in ForkJoinPool.commonPool-worker-2 @coroutine#4
execute 20 in main @coroutine#12
execute 17 in ForkJoinPool.commonPool-worker-5 @coroutine#2
execute 18 in ForkJoinPool.commonPool-worker-3 @coroutine#3
execute 24 in ForkJoinPool.commonPool-worker-1 @coroutine#6
execute 23 in ForkJoinPool.commonPool-worker-4 @coroutine#5
execute 22 in ForkJoinPool.commonPool-worker-2 @coroutine#4
execute 19 in ForkJoinPool.commonPool-worker-7 @coroutine#7
execute 21 in ForkJoinPool.commonPool-worker-6 @coroutine#1
execute 25 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 28 in main @coroutine#12
execute 29 in ForkJoinPool.commonPool-worker-2 @coroutine#2
execute 30 in ForkJoinPool.commonPool-worker-7 @coroutine#3
execute 27 in ForkJoinPool.commonPool-worker-4 @coroutine#10
execute 26 in ForkJoinPool.commonPool-worker-1 @coroutine#9
execute 32 in ForkJoinPool.commonPool-worker-3 @coroutine#4
execute 31 in ForkJoinPool.commonPool-worker-6 @coroutine#1
execute 36 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 35 in ForkJoinPool.commonPool-worker-4 @coroutine#7
execute 33 in ForkJoinPool.commonPool-worker-2 @coroutine#5
execute 38 in ForkJoinPool.commonPool-worker-3 @coroutine#2
execute 37 in main @coroutine#12
execute 34 in ForkJoinPool.commonPool-worker-7 @coroutine#6
execute 39 in ForkJoinPool.commonPool-worker-6 @coroutine#3
execute 40 in ForkJoinPool.commonPool-worker-1 @coroutine#1
execute 44 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 41 in ForkJoinPool.commonPool-worker-4 @coroutine#4
execute 46 in ForkJoinPool.commonPool-worker-1 @coroutine#2
execute 47 in ForkJoinPool.commonPool-worker-6 @coroutine#1
execute 45 in main @coroutine#12
execute 42 in ForkJoinPool.commonPool-worker-2 @coroutine#9
execute 43 in ForkJoinPool.commonPool-worker-7 @coroutine#10
execute 48 in ForkJoinPool.commonPool-worker-3 @coroutine#3
execute 52 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 49 in ForkJoinPool.commonPool-worker-1 @coroutine#5
execute 54 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 53 in main @coroutine#12
execute 50 in ForkJoinPool.commonPool-worker-4 @coroutine#6
execute 51 in ForkJoinPool.commonPool-worker-6 @coroutine#7
execute 56 in ForkJoinPool.commonPool-worker-3 @coroutine#3
execute 55 in ForkJoinPool.commonPool-worker-7 @coroutine#2
execute 60 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 61 in ForkJoinPool.commonPool-worker-1 @coroutine#5
execute 57 in ForkJoinPool.commonPool-worker-4 @coroutine#4
execute 59 in ForkJoinPool.commonPool-worker-3 @coroutine#10
execute 64 in ForkJoinPool.commonPool-worker-7 @coroutine#2
execute 58 in ForkJoinPool.commonPool-worker-6 @coroutine#9
execute 62 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 63 in main @coroutine#12
execute 68 in ForkJoinPool.commonPool-worker-5 @coroutine#8
execute 65 in ForkJoinPool.commonPool-worker-1 @coroutine#3
execute 66 in ForkJoinPool.commonPool-worker-4 @coroutine#6
execute 67 in ForkJoinPool.commonPool-worker-7 @coroutine#7
execute 69 in ForkJoinPool.commonPool-worker-6 @coroutine#4
execute 70 in ForkJoinPool.commonPool-worker-3 @coroutine#2
execute 74 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 75 in main @coroutine#12
execute 71 in ForkJoinPool.commonPool-worker-5 @coroutine#5
execute 76 in ForkJoinPool.commonPool-worker-7 @coroutine#3
execute 73 in ForkJoinPool.commonPool-worker-6 @coroutine#10
execute 78 in ForkJoinPool.commonPool-worker-4 @coroutine#6
execute 72 in ForkJoinPool.commonPool-worker-1 @coroutine#9
execute 77 in ForkJoinPool.commonPool-worker-3 @coroutine#8
execute 79 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 83 in main @coroutine#12
execute 84 in ForkJoinPool.commonPool-worker-4 @coroutine#3
execute 85 in ForkJoinPool.commonPool-worker-5 @coroutine#5
execute 82 in ForkJoinPool.commonPool-worker-1 @coroutine#7
execute 81 in ForkJoinPool.commonPool-worker-6 @coroutine#4
execute 80 in ForkJoinPool.commonPool-worker-7 @coroutine#2
execute 89 in ForkJoinPool.commonPool-worker-3 @coroutine#8
execute 90 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 91 in main @coroutine#12
execute 86 in ForkJoinPool.commonPool-worker-5 @coroutine#6
execute 88 in ForkJoinPool.commonPool-worker-6 @coroutine#10
execute 87 in ForkJoinPool.commonPool-worker-1 @coroutine#9
execute 92 in ForkJoinPool.commonPool-worker-7 @coroutine#2
execute 93 in ForkJoinPool.commonPool-worker-4 @coroutine#3
execute 99 in main @coroutine#12
execute 97 in ForkJoinPool.commonPool-worker-3 @coroutine#8
execute 98 in ForkJoinPool.commonPool-worker-2 @coroutine#1
execute 95 in ForkJoinPool.commonPool-worker-1 @coroutine#5
execute 100 in ForkJoinPool.commonPool-worker-4 @coroutine#6
execute 94 in ForkJoinPool.commonPool-worker-5 @coroutine#4
execute 96 in ForkJoinPool.commonPool-worker-7 @coroutine#7
1
5
6
7
2
8
4
3
12
10
15
11
16
9
14
13
20
17
18
24
23
22
19
21
25
28
29
30
27
26
32
31
36
35
33
38
37
34
39
40
44
41
46
47
45
42
43
48
52
49
54
53
50
51
56
55
60
61
57
59
64
58
62
63
68
65
66
67
69
70
74
75
71
76
73
78
72
77
79
83
84
85
82
81
80
89
90
91
86
88
87
92
93
99
97
98
95
100
94
96

async() 没有任何参数使用 DefaultDispatcher 并且将从父池中获取池,因此所有异步调用都在 CommonPool 中执行。如果您想要不同的线程集 运行 您的代码,请创建您自己的线程池。 虽然不使用主线程进行计算通常是一种很好的做法,但这取决于您的用例。

我用 Java 8 个并行流测试了解决方案:

jobs.parallelStream().forEach { it.execute() }

我发现 CPU 利用率可靠地达到 100%。作为参考,我使用了这个计算作业:

class MyJob {
    fun execute(): Double {
        val rnd = ThreadLocalRandom.current()
        var d = 1.0
        (1..rnd.nextInt(1_000_000)).forEach { _ ->
            d *= 1 + rnd.nextDouble(0.0000001)
        }
        return d
    }
}

请注意,它的持续时间随机变化,从零到执行 100,000,000 次 FP 乘法所需的时间。

出于好奇,我还研究了您添加到问题中的代码作为适合您的解决方案。我发现了一些问题,例如:

  • 将所有结果累积到一个列表中,而不是在它们可用时进行处理
  • 提交最后一个作业后立即关闭结果通道,而不是等待所有结果

我自己写了一些代码并添加了代码来对 Stream API one-liner 进行基准测试。这是:

const val NUM_JOBS = 1000
val jobs = (0 until NUM_JOBS).map { MyJob() }


fun parallelStream(): Double =
        jobs.parallelStream().map { it.execute() }.collect(summingDouble { it })

fun channels(): Double {
    val resultChannel = Channel<Double>(UNLIMITED)

    val mainComputeChannel = Channel<MyJob>()
    val poolComputeChannels = (1..commonPool().parallelism).map { _ ->
        GlobalScope.actor<MyJob>(Dispatchers.Default) {
            for (job in channel) {
                job.execute().also { resultChannel.send(it) }
            }
        }
    }
    val allComputeChannels = poolComputeChannels + mainComputeChannel

    // Launch a coroutine that submits the jobs
    GlobalScope.launch {
        jobs.forEach { job ->
            select {
                allComputeChannels.forEach { chan ->
                    chan.onSend(job) {}
                }
            }
        }
    }

    // Run the main loop which takes turns between running a job
    // submitted to the main thread channel and receiving a result
    return runBlocking {
        var completedCount = 0
        var sum = 0.0
        while (completedCount < NUM_JOBS) {
            select<Unit> {
                mainComputeChannel.onReceive { job ->
                    job.execute().also { resultChannel.send(it) }
                }
                resultChannel.onReceive { result ->
                    sum += result
                    completedCount++
                }
            }
        }
        sum
    }
}

fun main(args: Array<String>) {
    measure("Parallel Stream", ::parallelStream)
    measure("Channels", ::channels)
    measure("Parallel Stream", ::parallelStream)
    measure("Channels", ::channels)
}

fun measure(task: String, measuredCode: () -> Double) {
    val block = { print(measuredCode().toString().substringBefore('.')) }
    println("Warming up $task")
    (1..20).forEach { _ -> block() }
    println("\nMeasuring $task")
    val average = (1..20).map { measureTimeMillis(block) }.average()
    println("\n$task took $average ms")
}

这是我的典型结果:

Parallel Stream took 396.85 ms
Channels took 398.1 ms

结果类似,但一行代码仍然胜过 50 行代码:)