在 scikit-learn 中重复 FeatureUnion

repeated FeatureUnion in scikit-learn

我正在学习 scikit-learn 中的管道和 FeatureUnion,因此想知道是否可以在 class 上重复应用 'make_union'?

考虑以下代码:

import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.linear_model import LogisticRegression
import sklearn.datasets as d

class IrisDataManupulation(BaseEstimator, TransformerMixin):
    """
       Raise the matrix of feature in power
    """
    def __init__(self, power=2):
        self.power = power

    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return np.power(X, self.power)

iris_data = d.load_iris()

X, y = iris_data.data, iris_data.target


# feature union:
fu = FeatureUnion(transformer_list=[('squared', IrisDataManupulation(power=2)),
                               ('third', IrisDataManupulation(power=3))])

问题 有什么巧妙的方法可以创建 FeatureUnion 而无需重复相同的转换器,而是传递参数列表?

例如:

fu_new = FeatureUnion(transformer_list=[('raise_power', IrisDataManupulation(), 
                      param_grid = {'raise_power__power':[2,3]})

您可以将所有权力工作转移到单个自定义变形金刚中。我们可以更改您的 IrisDataManupulation 以处理其中的权力列表:

class IrisDataManupulation(BaseEstimator, TransformerMixin):

    def __init__(self, powers=[2]):
        self.powers = powers

    def transform(self, X):
        powered_arrays = []
        for power in self.powers:
            powered_arrays.append(np.power(X, power))

        return np.hstack(powered_arrays)

那么你可以只使用这个新的转换器而不是 FeatureUnion:

fu = IrisDataManupulation(powers=[2,3])

注意:如果你想从你的原始特征生成多项式特征,我会推荐see PolynomialFeatures,除了特征之间的其他交互之外,它还可以生成你想要的幂。