keras CAE 检查目标时出错:预期 conv2d_7 具有形状 (252, 252, 3) 但得到形状为 (256, 256, 3) 的数组
keras CAE Error when checking target: expected conv2d_7 to have shape (252, 252, 3) but got array with shape (256, 256, 3)
我设置了卷积层和池化层,然后去卷积和去池化,256 * 256 * 3图像的输入形状,但最后出现形状错误:
def build_auto_encode_model(shape=(256,256,3)):
input_img = Input(shape=shape)
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(3, (3, 3), activation='sigmoid', padding='same')(x)
encoder = Model(inputs=input_img, outputs=encoded)
autoencoder = Model(inputs=input_img, outputs=decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
return encoder, autoencoder
def train_auto_encode_model(encoder_model_path="./data/encoder.h5"):
X = np.load("data/train.npy")
X_train = X[int(round(X.shape[0] * 0.2)):, :]
X_test = X[0:int(round(X.shape[0] * 0.2)), :]
encoder, autoencoder = build_auto_encode_model()
autoencoder.fit(X_train, X_train, epochs=10, batch_size=64, shuffle=True, validation_data=(X_test, X_test))
encoder.save(encoder_model_path)
这是我得到的错误:
Error when checking target: expected conv2d_7 to have shape (252, 252, 3) but got array with shape (256, 256, 3)
错误回溯:
通过使用 autoencoder.summary()
你会看到最后一个 Conv2D 层的输出形状是 (None, 252, 252, 3)
;所以形状 (256,256,3)
的标签不兼容。这个问题的原因是你忘记设置前一个 Conv2D 层的 padding
参数。通过将其设置为 'same'
,此问题将得到解决:
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(x)
我设置了卷积层和池化层,然后去卷积和去池化,256 * 256 * 3图像的输入形状,但最后出现形状错误:
def build_auto_encode_model(shape=(256,256,3)):
input_img = Input(shape=shape)
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(3, (3, 3), activation='sigmoid', padding='same')(x)
encoder = Model(inputs=input_img, outputs=encoded)
autoencoder = Model(inputs=input_img, outputs=decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
return encoder, autoencoder
def train_auto_encode_model(encoder_model_path="./data/encoder.h5"):
X = np.load("data/train.npy")
X_train = X[int(round(X.shape[0] * 0.2)):, :]
X_test = X[0:int(round(X.shape[0] * 0.2)), :]
encoder, autoencoder = build_auto_encode_model()
autoencoder.fit(X_train, X_train, epochs=10, batch_size=64, shuffle=True, validation_data=(X_test, X_test))
encoder.save(encoder_model_path)
这是我得到的错误:
Error when checking target: expected conv2d_7 to have shape (252, 252, 3) but got array with shape (256, 256, 3)
错误回溯:
通过使用 autoencoder.summary()
你会看到最后一个 Conv2D 层的输出形状是 (None, 252, 252, 3)
;所以形状 (256,256,3)
的标签不兼容。这个问题的原因是你忘记设置前一个 Conv2D 层的 padding
参数。通过将其设置为 'same'
,此问题将得到解决:
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(x)