如何 运行 多个 WriteToBigQuery 在 google 云数据流/apache beam 中并行?

How to run multiple WriteToBigQuery parallel in google cloud dataflow / apache beam?

我想在给定数据的情况下将事件从一堆多个事件中分离出来

{"type": "A", "k1": "v1"}
{"type": "B", "k2": "v2"}
{"type": "C", "k3": "v3"}

我想在 bigquery 中将 type: A 事件分离到 table A,将 type:B 事件分离到 table Btype: C 事件 table C.

这是我通过apache beam python sdk实现的代码,并将数据写入bigquery,

A_schema = 'type:string, k1:string'
B_schema = 'type:string, k2:string'
C_schema = 'type:string, k2:string'

class ParseJsonDoFn(beam.DoFn):
    A_TYPE = 'tag_A'
    B_TYPE = 'tag_B'
    C_TYPE = 'tag_C'
    def process(self, element):
        text_line = element.trip()
        data = json.loads(text_line)

        if data['type'] == 'A':
            yield pvalue.TaggedOutput(self.A_TYPE, data)
        elif data['type'] == 'B':
            yield pvalue.TaggedOutput(self.B_TYPE, data)
        elif data['type'] == 'C':
            yield pvalue.TaggedOutput(self.C_TYPE, data)

def run():
    parser = argparse.ArgumentParser()
    parser.add_argument('--input',
                      dest='input',
                      default='data/path/data',
                      help='Input file to process.')
    known_args, pipeline_args = parser.parse_known_args(argv)
    pipeline_args.extend([
      '--runner=DirectRunner',
      '--project=project-id',
      '--job_name=seperate-bi-events-job',
    ])
    pipeline_options = PipelineOptions(pipeline_args)
    pipeline_options.view_as(SetupOptions).save_main_session = True
    with beam.Pipeline(options=pipeline_options) as p:
        lines = p | ReadFromText(known_args.input)

    multiple_lines = (
        lines
        | 'ParseJSON' >> (beam.ParDo(ParseJsonDoFn()).with_outputs(
                                      ParseJsonDoFn.A_TYPE,
                                      ParseJsonDoFn.B_TYPE,
                                      ParseJsonDoFn.C_TYPE)))

    a_line = multiple_lines.tag_A
    b_line = multiple_lines.tag_B
    c_line = multiple_lines.tag_C

    (a_line
        | "output_a" >> beam.io.WriteToBigQuery(
                                          'temp.a',
                                          schema = A_schema,
                                          write_disposition = beam.io.BigQueryDisposition.WRITE_TRUNCATE,
                                          create_disposition = beam.io.BigQueryDisposition.CREATE_IF_NEEDED
                                        ))

    (b_line
        | "output_b" >> beam.io.WriteToBigQuery(
                                          'temp.b',
                                          schema = B_schema,
                                          write_disposition = beam.io.BigQueryDisposition.WRITE_TRUNCATE,
                                          create_disposition = beam.io.BigQueryDisposition.CREATE_IF_NEEDED
                                        ))

    (c_line
        | "output_c" >> beam.io.WriteToBigQuery(
                                          'temp.c',
                                          schema = (C_schema),
                                          write_disposition = beam.io.BigQueryDisposition.WRITE_TRUNCATE,
                                          create_disposition = beam.io.BigQueryDisposition.CREATE_IF_NEEDED
                                        ))

    p.run().wait_until_finish()

输出:

INFO:root:start <DoOperation output_banner/WriteToBigQuery output_tags=['out']>
INFO:oauth2client.transport:Attempting refresh to obtain initial access_token
INFO:oauth2client.client:Refreshing access_token
WARNING:root:Sleeping for 150 seconds before the write as BigQuery inserts can be routed to deleted table for 2 mins after the delete and create.
INFO:root:start <DoOperation output_banner/WriteToBigQuery output_tags=['out']>
INFO:oauth2client.transport:Attempting refresh to obtain initial access_token
INFO:oauth2client.client:Refreshing access_token
WARNING:root:Sleeping for 150 seconds before the write as BigQuery inserts can be routed to deleted table for 2 mins after the delete and create.
INFO:root:start <DoOperation output_banner/WriteToBigQuery output_tags=['out']>
INFO:oauth2client.transport:Attempting refresh to obtain initial access_token
INFO:oauth2client.client:Refreshing access_token
WARNING:root:Sleeping for 150 seconds before the write as BigQuery inserts can be routed to deleted table for 2 mins after the delete and create.

但是,这里有两个问题

我的代码有问题还是我遗漏了什么?

there is no data in bigquery?

您的代码似乎非常完美,因为数据已写入 BigQuery(C_schema 应该是 k3 而不是 k2)。请记住,您正在流式传输数据,因此如果您单击 Preview table 按钮,直到流式缓冲区中的数据被提交,您才会看到它。 运行 SELECT * 查询将显示预期结果:

From the logs it seems the codes does NOT run parallel rather than run 3 times sequence?

好的,这很有趣。通过追踪 code 中的 WARNING 消息,我们可以读取以下内容:

# if write_disposition == BigQueryDisposition.WRITE_TRUNCATE we delete
# the table before this point.
if write_disposition == BigQueryDisposition.WRITE_TRUNCATE:
  # BigQuery can route data to the old table for 2 mins max so wait
  # that much time before creating the table and writing it
  logging.warning('Sleeping for 150 seconds before the write as ' +
                  'BigQuery inserts can be routed to deleted table ' +
                  'for 2 mins after the delete and create.')
  # TODO(BEAM-2673): Remove this sleep by migrating to load api
  time.sleep(150)
  return created_table
else:
  return created_table

阅读 BEAM-2673 and BEAM-2801 后,这似乎是由于使用 Streaming API 和 DirectRunner 的 BigQuery 接收器存在问题。这将导致进程在重新创建 table 时休眠 150 秒,并且这不是并行完成的。

相反,如果我们 运行 它在数据流上(使用 DataflowRunner,提供暂存和临时存储桶路径以及从 GCS 加载输入数据)这将 运行 三个并行导入作业。请看,在下图中,所有三个都从 22:19:45 开始并在 22:19:56 结束: