PySpark - 有没有办法水平连接两个数据帧,以便第一个 df 中的每一行都包含第二个 df 中的所有行

PySpark - Is there a way to join two dataframes horizontally so that each row in first df has all rows in second df

所以我有一个具有独特 user_ids 的用户 df 和一个带有一组问题的第二个 df。然后我想合并 dfs,以便每个 user_id 都附加到完整的问题集:

用户 Df:

+--------------------------+
|user_id                   |
+--------------------------+
|GDDVWWIOOKDY4WWBCICM4VOQHQ|
|77VC23NYEWLGHVVS4UMHJEVESU|
|VCOX7HUHTMPFCUOGYWGL4DMIRI|
|XPJBJMABYXLTZCKSONJVBCOXQM|
|QHTPQSFNOA5YEWH6N7FREBMMDM|
|JLQNBYCSC4DGCOHNLRBK5UANWI|
|RWYUOLBKIQMZVYHZJYCQ7SGTKA|
|CR33NGPK2GKK6G35SLZB7TGIJE|
|N6K7URSGH65T5UT6PZHMN62E2U|
|SZMPG3FQQOHGDV23UVXODTQETE|
+--------------------------+

问题 Df

+--------------------+-------------------+-----------------+--------------------+
|       category_type|   category_subject|      question_id|            question|
+--------------------+-------------------+-----------------+--------------------+
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|Consumer & Lifestyle|     Dietary Habits|pdl_diet_identity|Eating habits des...|
|        Demographics|Social Demographics|pdl_ethnicity_new|           Ethnicity|
|        Demographics|Social Demographics|pdl_ethnicity_new|           Ethnicity|
|        Demographics|Social Demographics|pdl_ethnicity_new|           Ethnicity|
+--------------------+-------------------+-----------------+--------------------+

所以现在我把 user_ids 变成一个列表并循环遍历它们,创建关于问题 df 的新列,从结果创建一个临时 df。然后我合并到最终的 df 以保存 user_id 迭代的结果,如下所示:

创建user_id列表:

unique_users_list = users_df \
  .select("user_id") \
  .agg(f.collect_list('user_id')).collect()[0][0]

创建空的最终 df 以附加到:

finaldf_schema = StructType([
    StructField("category_type", StringType(), False),
    StructField("category_subject", StringType(), False),
    StructField("question_id", StringType(), False),
    StructField("question", StringType(), False),
    StructField("user_id", StringType(), False)
])

final_df = spark.createDataFrame([], finaldf_schema)

然后循环 user_id 合并到问题 df:

for user_id in unique_users_list:
   temp_df = questions_df.withColumn("user_id", f.lit(user_id))
   final_df = final_df.union(temp_df)

但是,我发现性能很慢。请问有没有更高效快捷的方法呢

谢谢

您要找的是笛卡尔积。您可以使用 pyspark.sql.DataFrame.crossJoin():

实现此目的

尝试:

final_df = users_df.crossJoin(questions_df)