热图中每个变量的多个填充图例
Multiple fill legends for each variable in heat map
我有一个输入文件file1.txt
:
V1 V2 Score
rs4939134 SIFT 1
rs4939134 Polyphen2 0
rs4939134 MutationAssessor -1.75
rs151252290 SIFT 0.101
rs151252290 Polyphen2 0.128
rs151252290 MutationAssessor 1.735
rs12364724 SIFT 0
rs12364724 Polyphen2 0.926
rs12364724 MutationAssessor 1.75
rs34448143 SIFT 0.005
rs34448143 Polyphen2 0.194
rs34448143 MutationAssessor 0.205
rs115694714 SIFT 0.007
rs115694714 Polyphen2 1
rs115694714 MutationAssessor 0.895
这是我的 R 代码,用于将此 table 绘制为热图:
library(ggplot2)
mydata <- read.table("file7.txt", header = FALSE, sep = "\t")
names(mydata) <- c("V1", "V2", "Score")
ggplot(data = mydata, aes(x = V1, y = V2, fill = Score)) +
geom_tile() +
geom_text(aes(V1, V2, label = Score), color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(-5.76, 5.37)) +
labs(x = "pic1", y = "") +
theme_bw()
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
这是我得到的情节:
我需要的是每一行(V2 中的每种类型)我需要放置一个代表的图例,所以最后会有 3 个图例,每个代表(一个用于 SIFT,第二个用于 Polyphen,第三个对于 MutationAssessor)我可以指定不同的范围。
例如:从 (0,1) 筛选
和 (0,1) 的多边形
和来自 (-6,6)
的 MutationAssessor
我尝试了与之前提出的问题不同的方法,但没有任何效果。
感谢任何帮助。
这可能与 this 有关。
xs <- split(mydata, f = mydata$V2)
p1 <- ggplot(data = xs$MutationAssessor, aes(x = V1, y = 0, fill = Score)) +
geom_tile() +
geom_text(aes(label = Score), color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(-5.76, 5.37)) +
labs(x = "pic1", y = "") +
facet_grid(V2 ~ .) +
theme_bw() +
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
p2 <- p1 %+% xs$Polyphen2
p3 <- p1 %+% xs$SIFT
library(gridExtra)
grid.arrange(p1, p2, p3)
结果是:
编辑:
如果您想要 facets
的不同范围,但您希望值具有可比性(例如,所有图中 5 左右的值应为黄色),有一个可能的解决方案
首先离散化您的 fill
变量
mydata$colour <- cut(mydata$Score,
quantile(mydata$Score, c(0, 0.25, 0.5, 0.75, 1)),
include.lowest = T)
然后创建地块:
xs <- split(mydata, f = mydata$V2)
p1 <- ggplot(data = xs$MutationAssessor, aes(x = V1, y = 0, fill = colour)) +
geom_tile() +
geom_text(aes(label = Score), color = "black", size = 3) +
labs(x = "pic1", y = "") +
facet_grid(V2 ~ .) +
theme_bw() +
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
p2 <- p1 %+% xs$Polyphen2
p3 <- p1 %+% xs$SIFT
最后更改调色板:
mypalette <- c("#FFFFCC", "#A1DAB4", "#41B6C4", "#2C7FB8", "#253494")
names(mypalette) <- levels(mydata$colour)
p1 <- p1 + scale_fill_manual(values = mypalette[levels(xs$MutationAssessor$colour)])
p2 <- p2 + scale_fill_manual(values = mypalette[levels(xs$Polyphen2$colour)])
p3 <- p3 + scale_fill_manual(values = mypalette[levels(xs$SIFT$colour)])
结果是:
grid.arrange(p1, p2, p3)
您可以遍历三个给定变量并为每个变量绘制不同的图。最后还得把它们结合起来。
创建具有所需限制的数据集:
myLimits <- list(
list("SIFT", 0, 1),
list("Polyphen2", 0, 1),
list("MutationAssessor", -6, 6)
)
一次只为一个变量绘制热图的函数:
plotHeat <- function(type, MIN, MAX) {
library(ggplot2)
p <- ggplot(subset(mydata, V2 == type),
aes(V1, V2, fill = Score, label = Score)) +
geom_tile() +
geom_text(color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(MIN, MAX)) +
labs(x = "SNP",
y = NULL,
fill = type) +
theme_bw()
# Output x-axis only for the last plot
if (type != myLimits[[length(myLimits)]][[1]]) {
p <- p + theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank())
}
return(p)
}
使用 egg
包绘制和组合图:
res <- lapply(myLimits, function(x) {plotHeat(x[[1]], x[[2]], x[[3]])})
egg::ggarrange(plots = res)
我有一个输入文件file1.txt
:
V1 V2 Score
rs4939134 SIFT 1
rs4939134 Polyphen2 0
rs4939134 MutationAssessor -1.75
rs151252290 SIFT 0.101
rs151252290 Polyphen2 0.128
rs151252290 MutationAssessor 1.735
rs12364724 SIFT 0
rs12364724 Polyphen2 0.926
rs12364724 MutationAssessor 1.75
rs34448143 SIFT 0.005
rs34448143 Polyphen2 0.194
rs34448143 MutationAssessor 0.205
rs115694714 SIFT 0.007
rs115694714 Polyphen2 1
rs115694714 MutationAssessor 0.895
这是我的 R 代码,用于将此 table 绘制为热图:
library(ggplot2)
mydata <- read.table("file7.txt", header = FALSE, sep = "\t")
names(mydata) <- c("V1", "V2", "Score")
ggplot(data = mydata, aes(x = V1, y = V2, fill = Score)) +
geom_tile() +
geom_text(aes(V1, V2, label = Score), color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(-5.76, 5.37)) +
labs(x = "pic1", y = "") +
theme_bw()
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
这是我得到的情节:
我需要的是每一行(V2 中的每种类型)我需要放置一个代表的图例,所以最后会有 3 个图例,每个代表(一个用于 SIFT,第二个用于 Polyphen,第三个对于 MutationAssessor)我可以指定不同的范围。
例如:从 (0,1) 筛选 和 (0,1) 的多边形 和来自 (-6,6)
的 MutationAssessor我尝试了与之前提出的问题不同的方法,但没有任何效果。
感谢任何帮助。
这可能与 this 有关。
xs <- split(mydata, f = mydata$V2)
p1 <- ggplot(data = xs$MutationAssessor, aes(x = V1, y = 0, fill = Score)) +
geom_tile() +
geom_text(aes(label = Score), color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(-5.76, 5.37)) +
labs(x = "pic1", y = "") +
facet_grid(V2 ~ .) +
theme_bw() +
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
p2 <- p1 %+% xs$Polyphen2
p3 <- p1 %+% xs$SIFT
library(gridExtra)
grid.arrange(p1, p2, p3)
结果是:
编辑:
如果您想要 facets
的不同范围,但您希望值具有可比性(例如,所有图中 5 左右的值应为黄色),有一个可能的解决方案
首先离散化您的 fill
变量
mydata$colour <- cut(mydata$Score,
quantile(mydata$Score, c(0, 0.25, 0.5, 0.75, 1)),
include.lowest = T)
然后创建地块:
xs <- split(mydata, f = mydata$V2)
p1 <- ggplot(data = xs$MutationAssessor, aes(x = V1, y = 0, fill = colour)) +
geom_tile() +
geom_text(aes(label = Score), color = "black", size = 3) +
labs(x = "pic1", y = "") +
facet_grid(V2 ~ .) +
theme_bw() +
theme(panel.border = element_rect(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
axis.text = element_text(size = 4))
p2 <- p1 %+% xs$Polyphen2
p3 <- p1 %+% xs$SIFT
最后更改调色板:
mypalette <- c("#FFFFCC", "#A1DAB4", "#41B6C4", "#2C7FB8", "#253494")
names(mypalette) <- levels(mydata$colour)
p1 <- p1 + scale_fill_manual(values = mypalette[levels(xs$MutationAssessor$colour)])
p2 <- p2 + scale_fill_manual(values = mypalette[levels(xs$Polyphen2$colour)])
p3 <- p3 + scale_fill_manual(values = mypalette[levels(xs$SIFT$colour)])
结果是:
grid.arrange(p1, p2, p3)
您可以遍历三个给定变量并为每个变量绘制不同的图。最后还得把它们结合起来。
创建具有所需限制的数据集:
myLimits <- list(
list("SIFT", 0, 1),
list("Polyphen2", 0, 1),
list("MutationAssessor", -6, 6)
)
一次只为一个变量绘制热图的函数:
plotHeat <- function(type, MIN, MAX) {
library(ggplot2)
p <- ggplot(subset(mydata, V2 == type),
aes(V1, V2, fill = Score, label = Score)) +
geom_tile() +
geom_text(color = "black", size = 3) +
scale_fill_continuous(type = "viridis", limits = c(MIN, MAX)) +
labs(x = "SNP",
y = NULL,
fill = type) +
theme_bw()
# Output x-axis only for the last plot
if (type != myLimits[[length(myLimits)]][[1]]) {
p <- p + theme(axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank())
}
return(p)
}
使用 egg
包绘制和组合图:
res <- lapply(myLimits, function(x) {plotHeat(x[[1]], x[[2]], x[[3]])})
egg::ggarrange(plots = res)