无法将对象转换为浮点数
Can't convert object to float
我需要将对象转换为浮点数以便稍后组合一些数字,但似乎做不到。我正在使用我机器上的文件工作,但如果有人想复制的话,数据在网络上。
尝试转换来自 csv
crime = pd.read_csv("C://college_data/nrippner-opportunity-project-use-case/Crime_2015.csv", dtype={'PropertyCrime':float})
print(crime.head())
crime.dtypes
似乎是 'safe rule'
的问题
我也试过了
crime['PropertyCrime'] = crime.PropertyCrime.astype(float)
它只是说不能将对象转换为浮点数
有什么想法吗?
根据评论要求:
crime = pd.read_csv("C://college_data/nrippner-opportunity-project-use-case/Crime_2015.csv")
print(crime.PropertyCrime.head())
crime.dtypes
抱歉,如果有比从 jupyter notebook post 截图更好的方法,我深表歉意
由于 ,
.
,无法正确推断出数字
- 在
pd.read_csv
中使用thousands
参数
示例数据
MSA ViolentCrime Murder Rape Robbery AggravatedAssault PropertyCrime Burglary Theft MotorVehicleTheft State City
Abilene, TX M.S.A. 412.5 5.3 56.0 78.4 272.8 3,609.0 852.0 2,493.6 263.4 TX Abilene
Akron, OH M.S.A. 238.4 5.1 38.2 75.2 119.8 2,552.4 575.3 1,853.0 124.1 OH Akron
Albany, GA M.S.A. 667.9 7.8 30.4 157.9 471.8 3,894.1 1,099.6 2,652.8 141.7 GA Albany
Albany, OR M.S.A. 114.3 2.5 28.2 20.7 63.0 3,208.4 484.6 2,476.1 247.7 OR Albany
Albuquerque, NM M.S.A. 792.6 6.1 63.8 206.7 516.0 4,607.8 883.4 3,047.6 676.9 NM Albuquerque
import pandas as pd
df = pd.read_csv('https://query.data.world/s/27rl5szyyfje5zv5dg2us5c5vqlcfz', thousands=',')
- 现在可以正确推断浮点类型。
MSA ViolentCrime Murder Rape Robbery AggravatedAssault PropertyCrime Burglary Theft MotorVehicleTheft State City
Abilene, TX M.S.A. 412.5 5.3 56.0 78.4 272.8 3609.0 852.0 2493.6 263.4 TX Abilene
Akron, OH M.S.A. 238.4 5.1 38.2 75.2 119.8 2552.4 575.3 1853.0 124.1 OH Akron
Albany, GA M.S.A. 667.9 7.8 30.4 157.9 471.8 3894.1 1099.6 2652.8 141.7 GA Albany
Albany, OR M.S.A. 114.3 2.5 28.2 20.7 63.0 3208.4 484.6 2476.1 247.7 OR Albany
Albuquerque, NM M.S.A. 792.6 6.1 63.8 206.7 516.0 4607.8 883.4 3047.6 676.9 NM Albuquerque
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 378 entries, 0 to 377
Data columns (total 12 columns):
MSA 378 non-null object
ViolentCrime 377 non-null float64
Murder 378 non-null float64
Rape 378 non-null float64
Robbery 378 non-null float64
AggravatedAssault 377 non-null float64
PropertyCrime 372 non-null float64
Burglary 374 non-null float64
Theft 375 non-null float64
MotorVehicleTheft 378 non-null float64
State 378 non-null object
City 373 non-null object
dtypes: float64(9), object(3)
我需要将对象转换为浮点数以便稍后组合一些数字,但似乎做不到。我正在使用我机器上的文件工作,但如果有人想复制的话,数据在网络上。
尝试转换来自 csv
crime = pd.read_csv("C://college_data/nrippner-opportunity-project-use-case/Crime_2015.csv", dtype={'PropertyCrime':float})
print(crime.head())
crime.dtypes
似乎是 'safe rule'
的问题我也试过了
crime['PropertyCrime'] = crime.PropertyCrime.astype(float)
它只是说不能将对象转换为浮点数
有什么想法吗?
根据评论要求:
crime = pd.read_csv("C://college_data/nrippner-opportunity-project-use-case/Crime_2015.csv")
print(crime.PropertyCrime.head())
crime.dtypes
抱歉,如果有比从 jupyter notebook post 截图更好的方法,我深表歉意
由于 ,
.
,无法正确推断出数字
- 在
pd.read_csv
中使用
thousands
参数
示例数据
MSA ViolentCrime Murder Rape Robbery AggravatedAssault PropertyCrime Burglary Theft MotorVehicleTheft State City
Abilene, TX M.S.A. 412.5 5.3 56.0 78.4 272.8 3,609.0 852.0 2,493.6 263.4 TX Abilene
Akron, OH M.S.A. 238.4 5.1 38.2 75.2 119.8 2,552.4 575.3 1,853.0 124.1 OH Akron
Albany, GA M.S.A. 667.9 7.8 30.4 157.9 471.8 3,894.1 1,099.6 2,652.8 141.7 GA Albany
Albany, OR M.S.A. 114.3 2.5 28.2 20.7 63.0 3,208.4 484.6 2,476.1 247.7 OR Albany
Albuquerque, NM M.S.A. 792.6 6.1 63.8 206.7 516.0 4,607.8 883.4 3,047.6 676.9 NM Albuquerque
import pandas as pd
df = pd.read_csv('https://query.data.world/s/27rl5szyyfje5zv5dg2us5c5vqlcfz', thousands=',')
- 现在可以正确推断浮点类型。
MSA ViolentCrime Murder Rape Robbery AggravatedAssault PropertyCrime Burglary Theft MotorVehicleTheft State City
Abilene, TX M.S.A. 412.5 5.3 56.0 78.4 272.8 3609.0 852.0 2493.6 263.4 TX Abilene
Akron, OH M.S.A. 238.4 5.1 38.2 75.2 119.8 2552.4 575.3 1853.0 124.1 OH Akron
Albany, GA M.S.A. 667.9 7.8 30.4 157.9 471.8 3894.1 1099.6 2652.8 141.7 GA Albany
Albany, OR M.S.A. 114.3 2.5 28.2 20.7 63.0 3208.4 484.6 2476.1 247.7 OR Albany
Albuquerque, NM M.S.A. 792.6 6.1 63.8 206.7 516.0 4607.8 883.4 3047.6 676.9 NM Albuquerque
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 378 entries, 0 to 377
Data columns (total 12 columns):
MSA 378 non-null object
ViolentCrime 377 non-null float64
Murder 378 non-null float64
Rape 378 non-null float64
Robbery 378 non-null float64
AggravatedAssault 377 non-null float64
PropertyCrime 372 non-null float64
Burglary 374 non-null float64
Theft 375 non-null float64
MotorVehicleTheft 378 non-null float64
State 378 non-null object
City 373 non-null object
dtypes: float64(9), object(3)