变换数据框
Transform data frame
我有一份问卷,其中包含一个开放式问题,例如 "Please name up to ten animals",它为我提供了以下数据框(其中每个字母代表一种动物):
nrow <- 1000
list <- vector("list", nrow)
for(i in 1:nrow){
na <- rep(NA, sample(1:10, 1))
list[[i]] <- sample(c(letters, na), 10, replace=FALSE)
}
df <- data.frame()
df <- rbind(df, do.call(rbind, list))
head(df)
# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
# 1 r <NA> a j w e i h u z
# 2 t o e x d v <NA> z n c
# 3 f y e s n c z i u k
# 4 y <NA> v j h z p i c q
# 5 w s v f <NA> c g b x e
# 6 p <NA> a h v x k z o <NA>
如何将此数据框转换为如下所示的数据框?请记住,我实际上并不知道列名。
r <- 1000
c <- length(letters)
t1 <- matrix(rbinom(r*c,1,0.5),r,c)
colnames(t1) <- letters
head(t1)
# a b c d e f g h i j k l m n o p q r s t u v w x y z
# [1,] 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0
# [2,] 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1
# [3,] 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
# [4,] 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0
# [5,] 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0
# [6,] 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1
td <- data.frame(t(apply(df, 1, function(x) as.numeric( unique(unlist(df)) %in% x))))
colnames (td) <- unique(unlist(df))
letters
可以替换为动物名称向量 colnames(t1)
.
您可以使用 tidyr 执行以下操作,这可能比其他方法快得多,但我非常喜欢@germcd 的方法。您可能需要修补 select,删除 NA 以及空白 space,这可能是您提供的模拟数据的产物:
require(tidyr)
## Add an ID for each record:
df$id <- 1:nrow(df)
out <- (df %>%
gather(column, animal, -id) %>%
filter(animal != " ") %>%
spread(animal, column)
)
head(out)
此代码将未命名的列收集成长格式,删除任何空列或缺失数据,然后按 animal 列的唯一值展开。这也有可能需要 属性 保留动物命名的列顺序。如果不需要,那么您可以轻松地将生成的动物列转换为数字:
out_num <- out
out_num[,-1] <- as.numeric((!is.na(out[,-1])))
head(out_num)
您可以尝试 "qdapTools" 包中的 mtabulate
:
library(qdapTools)
head(mtabulate(as.data.frame(t(df))))
# c d i l m o r v x y a f s t k p u b h j n q e g w z
# 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 2 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
# 3 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
# 4 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
# 5 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0
# 6 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0
当然还有很多其他选择。
例如,我的 "splitstackshape" 包中的 cSplit_e
(缺点是效率低下,您需要先将值粘贴在一起,然后才能拆分它们):
library(splitstackshape)
library(dplyr)
作为 1 和 0:
df %>%
mutate(combined = apply(., 1, function(x) paste(na.omit(x), collapse = ","))) %>%
cSplit_e("combined", ",", mode = "binary", type = "character", fill = 0) %>%
select(starts_with("combined_")) %>%
head
# combined_a combined_b combined_c combined_d combined_e combined_f combined_g combined_h combined_i
# 1 0 0 1 1 0 0 0 0 1
# 2 1 0 0 1 0 1 0 0 0
# 3 1 0 0 0 0 0 0 0 1
# 4 0 1 1 0 0 0 0 1 1
# 5 0 1 0 1 0 0 0 1 0
# 6 0 1 0 0 0 0 0 0 0
# combined_j combined_k combined_l combined_m combined_n combined_o combined_p combined_q combined_r
# 1 0 0 1 1 0 1 0 0 1
# 2 0 0 0 1 0 0 0 0 0
# 3 0 1 0 0 0 0 1 0 1
# 4 1 0 1 0 1 0 0 0 0
# 5 0 1 0 0 1 0 1 1 1
# 6 1 1 0 1 0 0 0 1 0
# combined_s combined_t combined_u combined_v combined_w combined_x combined_y combined_z
# 1 0 0 0 1 0 1 1 0
# 2 1 1 0 0 0 0 0 0
# 3 0 1 1 0 0 1 1 0
# 4 0 0 1 0 0 0 1 0
# 5 1 0 0 0 0 0 0 0
# 6 1 1 1 0 0 0 0 0
作为原始值:
df %>%
mutate(combined = apply(., 1, function(x) paste(na.omit(x), collapse = ","))) %>%
cSplit_e("combined", ",", mode = "value", type = "character", fill = "") %>%
select(starts_with("combined_")) %>%
head
# combined_a combined_b combined_c combined_d combined_e combined_f combined_g combined_h combined_i
# 1 c d i
# 2 a d f
# 3 a i
# 4 b c h i
# 5 b d h
# 6 b
# combined_j combined_k combined_l combined_m combined_n combined_o combined_p combined_q combined_r
# 1 l m o r
# 2 m
# 3 k p r
# 4 j l n
# 5 k n p q r
# 6 j k m q
# combined_s combined_t combined_u combined_v combined_w combined_x combined_y combined_z
# 1 v x y
# 2 s t
# 3 t u x y
# 4 u y
# 5 s
# 6 s t u
或者,您可以使用 "reshape2":
library(reshape2)
## The values
dcast(melt(as.matrix(df), na.rm = TRUE),
Var1 ~ value, value.var = "value")
## ones and zeroes
dcast(melt(as.matrix(df), na.rm = TRUE),
Var1 ~ value, value.var = "value", fun.aggregate = length)
我有一份问卷,其中包含一个开放式问题,例如 "Please name up to ten animals",它为我提供了以下数据框(其中每个字母代表一种动物):
nrow <- 1000
list <- vector("list", nrow)
for(i in 1:nrow){
na <- rep(NA, sample(1:10, 1))
list[[i]] <- sample(c(letters, na), 10, replace=FALSE)
}
df <- data.frame()
df <- rbind(df, do.call(rbind, list))
head(df)
# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
# 1 r <NA> a j w e i h u z
# 2 t o e x d v <NA> z n c
# 3 f y e s n c z i u k
# 4 y <NA> v j h z p i c q
# 5 w s v f <NA> c g b x e
# 6 p <NA> a h v x k z o <NA>
如何将此数据框转换为如下所示的数据框?请记住,我实际上并不知道列名。
r <- 1000
c <- length(letters)
t1 <- matrix(rbinom(r*c,1,0.5),r,c)
colnames(t1) <- letters
head(t1)
# a b c d e f g h i j k l m n o p q r s t u v w x y z
# [1,] 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0
# [2,] 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1
# [3,] 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
# [4,] 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0
# [5,] 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0
# [6,] 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1
td <- data.frame(t(apply(df, 1, function(x) as.numeric( unique(unlist(df)) %in% x))))
colnames (td) <- unique(unlist(df))
letters
可以替换为动物名称向量 colnames(t1)
.
您可以使用 tidyr 执行以下操作,这可能比其他方法快得多,但我非常喜欢@germcd 的方法。您可能需要修补 select,删除 NA 以及空白 space,这可能是您提供的模拟数据的产物:
require(tidyr)
## Add an ID for each record:
df$id <- 1:nrow(df)
out <- (df %>%
gather(column, animal, -id) %>%
filter(animal != " ") %>%
spread(animal, column)
)
head(out)
此代码将未命名的列收集成长格式,删除任何空列或缺失数据,然后按 animal 列的唯一值展开。这也有可能需要 属性 保留动物命名的列顺序。如果不需要,那么您可以轻松地将生成的动物列转换为数字:
out_num <- out
out_num[,-1] <- as.numeric((!is.na(out[,-1])))
head(out_num)
您可以尝试 "qdapTools" 包中的 mtabulate
:
library(qdapTools)
head(mtabulate(as.data.frame(t(df))))
# c d i l m o r v x y a f s t k p u b h j n q e g w z
# 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 2 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
# 3 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
# 4 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
# 5 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0
# 6 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0
当然还有很多其他选择。
例如,我的 "splitstackshape" 包中的 cSplit_e
(缺点是效率低下,您需要先将值粘贴在一起,然后才能拆分它们):
library(splitstackshape)
library(dplyr)
作为 1 和 0:
df %>%
mutate(combined = apply(., 1, function(x) paste(na.omit(x), collapse = ","))) %>%
cSplit_e("combined", ",", mode = "binary", type = "character", fill = 0) %>%
select(starts_with("combined_")) %>%
head
# combined_a combined_b combined_c combined_d combined_e combined_f combined_g combined_h combined_i
# 1 0 0 1 1 0 0 0 0 1
# 2 1 0 0 1 0 1 0 0 0
# 3 1 0 0 0 0 0 0 0 1
# 4 0 1 1 0 0 0 0 1 1
# 5 0 1 0 1 0 0 0 1 0
# 6 0 1 0 0 0 0 0 0 0
# combined_j combined_k combined_l combined_m combined_n combined_o combined_p combined_q combined_r
# 1 0 0 1 1 0 1 0 0 1
# 2 0 0 0 1 0 0 0 0 0
# 3 0 1 0 0 0 0 1 0 1
# 4 1 0 1 0 1 0 0 0 0
# 5 0 1 0 0 1 0 1 1 1
# 6 1 1 0 1 0 0 0 1 0
# combined_s combined_t combined_u combined_v combined_w combined_x combined_y combined_z
# 1 0 0 0 1 0 1 1 0
# 2 1 1 0 0 0 0 0 0
# 3 0 1 1 0 0 1 1 0
# 4 0 0 1 0 0 0 1 0
# 5 1 0 0 0 0 0 0 0
# 6 1 1 1 0 0 0 0 0
作为原始值:
df %>%
mutate(combined = apply(., 1, function(x) paste(na.omit(x), collapse = ","))) %>%
cSplit_e("combined", ",", mode = "value", type = "character", fill = "") %>%
select(starts_with("combined_")) %>%
head
# combined_a combined_b combined_c combined_d combined_e combined_f combined_g combined_h combined_i
# 1 c d i
# 2 a d f
# 3 a i
# 4 b c h i
# 5 b d h
# 6 b
# combined_j combined_k combined_l combined_m combined_n combined_o combined_p combined_q combined_r
# 1 l m o r
# 2 m
# 3 k p r
# 4 j l n
# 5 k n p q r
# 6 j k m q
# combined_s combined_t combined_u combined_v combined_w combined_x combined_y combined_z
# 1 v x y
# 2 s t
# 3 t u x y
# 4 u y
# 5 s
# 6 s t u
或者,您可以使用 "reshape2":
library(reshape2)
## The values
dcast(melt(as.matrix(df), na.rm = TRUE),
Var1 ~ value, value.var = "value")
## ones and zeroes
dcast(melt(as.matrix(df), na.rm = TRUE),
Var1 ~ value, value.var = "value", fun.aggregate = length)