使用自定义转换器子类对 sklearn 管道进行评分时出现 AttributeError,但在拟合时却没有
AttributeError when scoring sklearn pipeline with custom transformer subclass but not when fitting
我在理解如何创建 sklearn t运行sformer 的子class 时遇到问题。我想为长代码示例道歉,我试图使最小可重现性,但无法重新创建错误。希望您会看到大部分代码示例都是我记录的。
下面的代码片段中描述了 t运行sformer。
class PCAVarThreshSelector(PCA):
"""
Description
-----------
Selects the columns that can explain a certain percentage of the variance in a data set
Authors
-------
Eden Trainor
Notes
-----
1. PCA has a principole component limit of 4459 components, no matter how many more features you put into
it this is a hrad limit of how many components it will return to you.
"""
def __init__(self,
n_components=None,
copy=True,
whiten=False,
svd_solver='auto',
tol=0.0,
iterated_power='auto',
random_state=None,
explained_variance_thresh = 0.8):
super(PCAVarThreshSelector, self).__init__(n_components, copy, whiten, svd_solver, tol, iterated_power, random_state)
self.explained_variance_thresh = explained_variance_thresh
def find_nearest_index(self, array, value):
"""
Description
-----------
Finds the index of the coefficient in an array nearest a certain value.
Args
----
array: np.ndarray, (number_of_componants,)
Array containing coeffficients
value: int,
Index of coefficient in array closset to this value is found.
Returns
-------
index: int,
Index of coefficient in array closest to value.
"""
index = (np.abs(array - value)).argmin()
return index
def fit(self, X, y = None):
"""
Description
-----------
Fits the PCA and calculates the index threshold index of the cumulative explained variance ratio array.
Args
----
X: DataFrame, (examples, features)
Pandas DataFrame containing training example features
y: array/DataFrame, (examples,)
(Optional) Training example labels
Returns
-------
self: PCAVarThreshSelector instance
Returns transfromer instance with fitted instance variables on training data.
"""
#PCA fit the dataset
super(PCAVarThreshSelector, self).fit(X)
#Get the cumulative explained variance ratio array (ascending order of cumulative variance explained)
cumulative_EVR = self.explained_variance_ratio_.cumsum()
#Finds the index corresponding to the threshold amount of variance explained
self.indx = self.find_nearest_index(array = cumulative_EVR,
value = self.explained_variance_thresh)
return self
def transform(self, X):
"""
Description
-----------
Selects all the principle components up to the threshold variance.
Args
----
X: DataFrame, (examples, features)
Pandas DataFrame containing training example features
Returns
-------
self: np.ndarray, (examples, indx)
Array containing the minimum number of principle componants required by explained_variance_thresh.
"""
all_components = super(PCAVarThreshSelector, self).transform(X) #To the sklean limit
return all_components[:, :self.indx]
我用我的数据测试了这个 class 并且它按预期工作,在一个带有 RobustScaler infront 的简单管道中。在这个简单的管道中,class 将适合并且 t运行 会按预期形成。
然后我将简单的管道放入另一个带有估算器的管道中,希望 .fit() 和 .score() 管道:
model_pipe = Pipeline([('ppp', Pipeline([('rs', RobustScaler()),
('pcavts', PCAVarThreshSelector(whiten = True))])),
('lin_reg', LinearRegression())])
管道安装无误。但是,当我尝试对其进行评分时,我得到一个 AttributeError:
AttributeError Traceback (most recent call last)
<ipython-input-92-cf336db13fe1> in <module>()
----> 1 model_pipe.score(X_test, y_test)
~\Anaconda3\lib\site-packages\sklearn\utils\metaestimators.py in <lambda>(*args, **kwargs)
113
114 # lambda, but not partial, allows help() to work with update_wrapper
--> 115 out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
116 # update the docstring of the returned function
117 update_wrapper(out, self.fn)
~\Anaconda3\lib\site-packages\sklearn\pipeline.py in score(self, X, y, sample_weight)
484 for name, transform in self.steps[:-1]:
485 if transform is not None:
--> 486 Xt = transform.transform(Xt)
487 score_params = {}
488 if sample_weight is not None:
~\Anaconda3\lib\site-packages\sklearn\pipeline.py in _transform(self, X)
424 for name, transform in self.steps:
425 if transform is not None:
--> 426 Xt = transform.transform(Xt)
427 return Xt
428
<ipython-input-88-9153ece48646> in transform(self, X)
114 all_components = super(PCAVarThreshSelector, self).transform(X) #To the sklean limit
115
--> 116 return all_components[:, :self.indx]
117
AttributeError: 'PCAVarThreshSelector' object has no attribute 'indx'
我最初认为这与我在 class 中调用 super() 的方式有关。根据 this 博客 post,我认为当管道被 .score()-ed 时,class 正在重新启动,因此 fit 方法中创建的属性不再得分时存在。
我尝试了其他几种调用父方法 class 的方法,包括:super().method、PCA.method(),以及博客 post 中建议的方法,但是都给出相同的错误。
我想也许博客的解决方案是针对Python 2的,而我的代码在Python 3.
然而,当尝试以最小可重现的方式重现此问题时,我不再遇到错误。
from sklearn.datasets import make_regression
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
X, y = make_regression() #Just some dummy regression data for demonstrative purposes.
class BaseTransformer(TransformerMixin, BaseEstimator):
def __init__(self):
print("Base Init")
def fit(self, X, y = None):
return self
def transform(self, X):
return X
class DerivedTransformer(BaseTransformer):
def __init__(self):
super(DerivedTransformer, self).__init__()
print("Dervied init")
def fit(self, X, y = None):
super(DerivedTransformer, self).fit(X, y)
self.new_attribute = 0.0001
return self
def transform(self, X):
output = super(DerivedTransformer, self).transform(X)
output += self.new_attribute
return output
base_pipeline = Pipeline([('base_transformer', BaseTransformer()),
('linear_regressor', LinearRegression())])
derived_pipeline = Pipeline([('derived_transformer', DerivedTransformer()),
('linear_regressor', LinearRegression())])
上面的代码运行符合预期,没有错误。我不知所措。谁能帮我解决这个错误?
那是因为您还没有覆盖(实施)fit_transform()
方法。
只需将以下部分添加到您的 PCAVarThreshSelector
即可解决问题:
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
原因:流水线将尝试在所有步骤(不包括最后一个步骤)上首先调用fit_transform()
方法。
这个 fit_transform()
方法只是一个 shorthand 用于调用 fit()
然后 transform()
并且定义如我上面定义的那样。
但在某些情况下,如 PCA
,或 scikit-learn 中的 CountVectorizer
等,此方法的实现方式不同以使处理速度更快,因为:
- 与在
fit()
中检查数据然后在 transform()
中再次检查相比,将数据检查/验证(和转换)为适当的形式仅需完成一次
- 其他一些重复性工作可以轻松简化
由于您从 PCA 继承,当您调用 model_pipe.fit()
时,它使用来自 PCA 的 fit_transform()
,因此永远不会转到您定义的 fit()
方法(因此您的 class 对象从不包含任何 indx
属性。
但是当您调用 score()
时,只有 transform()
在管道的所有中间步骤上被调用并转到您实现的 transform()
。因此错误。
如果您在 BaseTransformer
中以稍微不同的方式实现 fit_transform()
,则您关于 BaseTransformer 和 DerivedTransformer 的示例可以重现。
我在理解如何创建 sklearn t运行sformer 的子class 时遇到问题。我想为长代码示例道歉,我试图使最小可重现性,但无法重新创建错误。希望您会看到大部分代码示例都是我记录的。
下面的代码片段中描述了 t运行sformer。
class PCAVarThreshSelector(PCA):
"""
Description
-----------
Selects the columns that can explain a certain percentage of the variance in a data set
Authors
-------
Eden Trainor
Notes
-----
1. PCA has a principole component limit of 4459 components, no matter how many more features you put into
it this is a hrad limit of how many components it will return to you.
"""
def __init__(self,
n_components=None,
copy=True,
whiten=False,
svd_solver='auto',
tol=0.0,
iterated_power='auto',
random_state=None,
explained_variance_thresh = 0.8):
super(PCAVarThreshSelector, self).__init__(n_components, copy, whiten, svd_solver, tol, iterated_power, random_state)
self.explained_variance_thresh = explained_variance_thresh
def find_nearest_index(self, array, value):
"""
Description
-----------
Finds the index of the coefficient in an array nearest a certain value.
Args
----
array: np.ndarray, (number_of_componants,)
Array containing coeffficients
value: int,
Index of coefficient in array closset to this value is found.
Returns
-------
index: int,
Index of coefficient in array closest to value.
"""
index = (np.abs(array - value)).argmin()
return index
def fit(self, X, y = None):
"""
Description
-----------
Fits the PCA and calculates the index threshold index of the cumulative explained variance ratio array.
Args
----
X: DataFrame, (examples, features)
Pandas DataFrame containing training example features
y: array/DataFrame, (examples,)
(Optional) Training example labels
Returns
-------
self: PCAVarThreshSelector instance
Returns transfromer instance with fitted instance variables on training data.
"""
#PCA fit the dataset
super(PCAVarThreshSelector, self).fit(X)
#Get the cumulative explained variance ratio array (ascending order of cumulative variance explained)
cumulative_EVR = self.explained_variance_ratio_.cumsum()
#Finds the index corresponding to the threshold amount of variance explained
self.indx = self.find_nearest_index(array = cumulative_EVR,
value = self.explained_variance_thresh)
return self
def transform(self, X):
"""
Description
-----------
Selects all the principle components up to the threshold variance.
Args
----
X: DataFrame, (examples, features)
Pandas DataFrame containing training example features
Returns
-------
self: np.ndarray, (examples, indx)
Array containing the minimum number of principle componants required by explained_variance_thresh.
"""
all_components = super(PCAVarThreshSelector, self).transform(X) #To the sklean limit
return all_components[:, :self.indx]
我用我的数据测试了这个 class 并且它按预期工作,在一个带有 RobustScaler infront 的简单管道中。在这个简单的管道中,class 将适合并且 t运行 会按预期形成。
然后我将简单的管道放入另一个带有估算器的管道中,希望 .fit() 和 .score() 管道:
model_pipe = Pipeline([('ppp', Pipeline([('rs', RobustScaler()),
('pcavts', PCAVarThreshSelector(whiten = True))])),
('lin_reg', LinearRegression())])
管道安装无误。但是,当我尝试对其进行评分时,我得到一个 AttributeError:
AttributeError Traceback (most recent call last)
<ipython-input-92-cf336db13fe1> in <module>()
----> 1 model_pipe.score(X_test, y_test)
~\Anaconda3\lib\site-packages\sklearn\utils\metaestimators.py in <lambda>(*args, **kwargs)
113
114 # lambda, but not partial, allows help() to work with update_wrapper
--> 115 out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
116 # update the docstring of the returned function
117 update_wrapper(out, self.fn)
~\Anaconda3\lib\site-packages\sklearn\pipeline.py in score(self, X, y, sample_weight)
484 for name, transform in self.steps[:-1]:
485 if transform is not None:
--> 486 Xt = transform.transform(Xt)
487 score_params = {}
488 if sample_weight is not None:
~\Anaconda3\lib\site-packages\sklearn\pipeline.py in _transform(self, X)
424 for name, transform in self.steps:
425 if transform is not None:
--> 426 Xt = transform.transform(Xt)
427 return Xt
428
<ipython-input-88-9153ece48646> in transform(self, X)
114 all_components = super(PCAVarThreshSelector, self).transform(X) #To the sklean limit
115
--> 116 return all_components[:, :self.indx]
117
AttributeError: 'PCAVarThreshSelector' object has no attribute 'indx'
我最初认为这与我在 class 中调用 super() 的方式有关。根据 this 博客 post,我认为当管道被 .score()-ed 时,class 正在重新启动,因此 fit 方法中创建的属性不再得分时存在。 我尝试了其他几种调用父方法 class 的方法,包括:super().method、PCA.method(),以及博客 post 中建议的方法,但是都给出相同的错误。
我想也许博客的解决方案是针对Python 2的,而我的代码在Python 3.
然而,当尝试以最小可重现的方式重现此问题时,我不再遇到错误。
from sklearn.datasets import make_regression
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
X, y = make_regression() #Just some dummy regression data for demonstrative purposes.
class BaseTransformer(TransformerMixin, BaseEstimator):
def __init__(self):
print("Base Init")
def fit(self, X, y = None):
return self
def transform(self, X):
return X
class DerivedTransformer(BaseTransformer):
def __init__(self):
super(DerivedTransformer, self).__init__()
print("Dervied init")
def fit(self, X, y = None):
super(DerivedTransformer, self).fit(X, y)
self.new_attribute = 0.0001
return self
def transform(self, X):
output = super(DerivedTransformer, self).transform(X)
output += self.new_attribute
return output
base_pipeline = Pipeline([('base_transformer', BaseTransformer()),
('linear_regressor', LinearRegression())])
derived_pipeline = Pipeline([('derived_transformer', DerivedTransformer()),
('linear_regressor', LinearRegression())])
上面的代码运行符合预期,没有错误。我不知所措。谁能帮我解决这个错误?
那是因为您还没有覆盖(实施)fit_transform()
方法。
只需将以下部分添加到您的 PCAVarThreshSelector
即可解决问题:
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
原因:流水线将尝试在所有步骤(不包括最后一个步骤)上首先调用fit_transform()
方法。
这个 fit_transform()
方法只是一个 shorthand 用于调用 fit()
然后 transform()
并且定义如我上面定义的那样。
但在某些情况下,如 PCA
,或 scikit-learn 中的 CountVectorizer
等,此方法的实现方式不同以使处理速度更快,因为:
- 与在
fit()
中检查数据然后在transform()
中再次检查相比,将数据检查/验证(和转换)为适当的形式仅需完成一次
- 其他一些重复性工作可以轻松简化
由于您从 PCA 继承,当您调用 model_pipe.fit()
时,它使用来自 PCA 的 fit_transform()
,因此永远不会转到您定义的 fit()
方法(因此您的 class 对象从不包含任何 indx
属性。
但是当您调用 score()
时,只有 transform()
在管道的所有中间步骤上被调用并转到您实现的 transform()
。因此错误。
如果您在 BaseTransformer
中以稍微不同的方式实现 fit_transform()
,则您关于 BaseTransformer 和 DerivedTransformer 的示例可以重现。