Haskell 二叉树的插入函数

Haskell Insert function for Binary Trees

我正在尝试创建一个名为 "insertm" 的函数,该函数应该将键和值插入二进制文件 tree.If 键已经存在,应该 return "nothing".如果不是,它应该根据它的值将键和值插入到树中。我能够完成其中的大部分工作,但是我遇到了一个错误,我不确定如何修复。

这是一个例子:

      TestQ4> insertm 25 "vw" t5
      Just (10:"ghi")<$,(30:"def")<(20:"abc")<$,(25:"vw")>,$>>
      TestQ4> insertm 20 "vw" t5
      Nothing

这是我的代码:

     data BinaryTree a b = Leaf | Node a b (BinaryTree a b) (BinaryTree a b) 

     insertm :: (Ord a, Show a, Show b) =>
     a -> b -> BinaryTree a b -> Maybe (BinaryTree a b)

     insertm val key Leaf = Just (Node val key Leaf Leaf)
     insertm x y (Node val key left right)
          | x == val = Nothing
          | x < val = Just (Node val key (insertm x y left) right)
          | otherwise = Just (Node val key left (insertm x y right))

这是我得到的错误:

       * Couldn't match expected type `BinaryTree a b'
              with actual type `Maybe (BinaryTree a b)'
       * In the fourth argument of `Node', namely `(insertm x y right)'
         In the first argument of `Just', namely
           `(Node val key left (insertm x y right))'
         In the expression: Just (Node val key left (insertm x y right))
       * Relevant bindings include
          right :: BinaryTree a b (bound at TestQ4.hs:101:32)
          left :: BinaryTree a b (bound at TestQ4.hs:101:27)
          key :: b (bound at TestQ4.hs:101:23)
          val :: a (bound at TestQ4.hs:101:19)
          y :: b (bound at TestQ4.hs:101:11)
          x :: a (bound at TestQ4.hs:101:9)
         (Some bindings suppressed; use -fmax-relevant-binds=N or -fno-max- 
            relevant-binds)

          | x < val = Just (Node val key (insertm x y left) right)
                                          ^^^^^^^^^^^^^^^^

我的其他情况也出现错误。所以我有点卡住了任何帮助将不胜感激。

问题是 (insertm x y left) 是一个 Maybe (BinaryTree a b) in:

 | x < val = Just (Node val key (insertm x y left) right)

不是BinaryTree a b,因此你不能只用Maybe (BinaryTree a b)作为子树构造这样的BinaryTree

但是您可以 "unpack" 值,然后使用它,例如:

insertm :: (Ord a, Show a, Show b) => a -> b -> BinaryTree a b -> Maybe (BinaryTree a b)
insertm val key Leaf = Just (Node val key Leaf Leaf)
insertm x y (Node val key left right)
    | x == val = Nothing
    | x < val = case insertm x y left of
        Just l -> Just (Node val key l right)
        Nothing -> Nothing
    | otherwise =  case insertm x y right of
        Just r -> Just (Node val key left r)
        Nothing -> Nothing

上面的模式很流行,我们可以在这里使用fmap :: Functor f => (a -> b) -> f a -> f b,将Just x中的x映射到Just (f x)并映射NothingNothing:

insertm :: (Ord a, Show a, Show b) => a -> b -> BinaryTree a b -> Maybe (BinaryTree a b)
insertm val key Leaf = Just (Node val key Leaf Leaf)
insertm x y (Node val key left right)
    | x == val = Nothing
    | x < val = fmap (flip (Node val key) right) (insertm x y left)
    | otherwise = fmap (Node val key left) (insertm x y right)

或喜欢说:

insertm :: (Ord a, Show a, Show b) => a -> b -> BinaryTree a b -> Maybe (BinaryTree a b)
insertm val key Leaf = Just (Node val key Leaf Leaf)
insertm x y (Node val key left right)
    | x == val = Nothing
    | x < val = Node val key <$> insertm x y left <*> pure right
    | otherwise = Node val key left <$> insertm x y right

(<$>) 是等价于 fmap 的函数,而 (<*>) :: f (a -> b) -> f a -> f b 是一个取一个 Maybe (BinaryTree a b -> BinaryTree a b) 并应用函数 [=29] 的函数=] 包裹在 Just 中,值 x 包裹在右边 Just 和 returns Just (f x) 鉴于两者因此 Justs ,如果两者之一是 Nothing(或两者),则它将 return Nothing.