了解 SciKit Learn CV 验证分数
Understand SciKit Learn CV Validation Scores
当 运行 一个 GridSearchCV 时,我试图理解 cv_validation_scores 的输出。文档没有充分解释这一点。
当我打印 grid_search.grid_scores_
时,我得到一个包含项目的列表,如下所示:
[mean: 0.60000, std: 0.18002, params: {'tfidf__binary': True, tfidf__ngram_range': (1, 1)....
这是有道理的。但是,当我尝试解压缩 grid_scores 的每个实例时,我得到:
[0] same dictionary as above, makes sense
[1] score for all folds, makes sense
[2] a list that I don't understand, that looks like, "[ 0.75 0.33333333 0.66666667]"
这里报告的分数是多少?
正如我在邮件列表中发布的那样,the documentation 非常清楚:
grid_scores_ : list of named tuples
Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes:
parameters, a dict of parameter settings
mean_validation_score, the mean score over the cross-validation folds
cv_validation_scores, the list of scores for each fold
这些是交叉验证中每折的分数。
我取消订阅并重新订阅。似乎现在有效
当 运行 一个 GridSearchCV 时,我试图理解 cv_validation_scores 的输出。文档没有充分解释这一点。
当我打印 grid_search.grid_scores_
时,我得到一个包含项目的列表,如下所示:
[mean: 0.60000, std: 0.18002, params: {'tfidf__binary': True, tfidf__ngram_range': (1, 1)....
这是有道理的。但是,当我尝试解压缩 grid_scores 的每个实例时,我得到:
[0] same dictionary as above, makes sense
[1] score for all folds, makes sense
[2] a list that I don't understand, that looks like, "[ 0.75 0.33333333 0.66666667]"
这里报告的分数是多少?
正如我在邮件列表中发布的那样,the documentation 非常清楚:
grid_scores_ : list of named tuples
Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes:
parameters, a dict of parameter settings mean_validation_score, the mean score over the cross-validation folds cv_validation_scores, the list of scores for each fold
这些是交叉验证中每折的分数。
我取消订阅并重新订阅。似乎现在有效