我绕过一个 SettingWithCopyWarning,感觉方法不对而且计算效率低下,有没有更好的方法?

I got around a SettingWithCopyWarning, feels like the wrong way and computationally inefficient, is there a better way?

我在尝试更改 DataFrame 中的某些值时遇到了常见的 SettingWithCopyWarning。我找到了一种无需禁用警告即可解决此问题的方法,但我觉得我做错了,而且这是不必要的浪费,而且计算效率低下。

label_encoded_feature_data_to_be_standardised_X_train = X_train_label_encoded[['price', 'vintage']]
label_encoded_feature_data_to_be_standardised_X_test = X_test_label_encoded[['price', 'vintage']]
label_encoded_standard_scaler = StandardScaler()
label_encoded_standard_scaler.fit(label_encoded_feature_data_to_be_standardised_X_train)

X_train_label_encoded_standardised = label_encoded_standard_scaler.transform(label_encoded_feature_data_to_be_standardised_X_train)
X_test_label_encoded_standardised = label_encoded_standard_scaler.transform(label_encoded_feature_data_to_be_standardised_X_test)

这就是它的设置方式,如果我这样做,我会收到警告:

X_train_label_encoded.loc[:,'price'] = X_train_label_encoded_standardised[:,0]

如果我这样做:

X_train_label_encoded_standardised_df = pd.DataFrame(data=X_train_label_encoded_standardised, columns=['price', 'vintage'])

我通过这样做解决了这个问题:

X_train_label_encoded = X_train_label_encoded.drop('price', axis=1)
X_train_label_encoded['price'] = X_train_label_encoded_standardised_df.loc[:,'price']

这也有效:

X_train_label_encoded.replace(to_replace=X_train_label_encoded['price'], value=X_train_label_encoded_standardised_df['price'])

但即便如此,创建额外的 DataFrame 也显得过于笨重。

为什么我不能以某种方式分配列?或者使用一些替换方法的安排?文档好像没有解决办法,还是我看错了?缺少一些明显但没有明确说明的解决方案?

有更好的方法吗?

很多时候,这个警告只是一个警告。如果您的代码可以正常工作并且您没有使用链式赋值,您通常无需担心。

如果您的转换维护索引,包括顺序,并且您的数据是数字,您可以使用 pd.DataFrame.values:

X_train_label_encoded['price'] = X_train_label_encoded_standardised.values[:, 0]

这应该回避警告,因为 X_train_label_encoded_standardised.values 评估为较低级别的 NumPy 数组。