最有效的字符串缓冲

The most efficient string buffering

我在当前的项目中遇到了一个需求,这使我需要一种以最少的时间成本对 unicode 符号序列进行缓冲的方法。 这种缓冲区的基本操作是:

因此,我测试了几种方法来找到时间开销最小的方法,但我仍然不确定我是否找到了最快的方法。我尝试了以下算法(从最有效的开始列出):

  1. 一个list个符号
  2. io.StringIO 对象
  3. 朴素的字符串存储
  4. 预分配array.array

谁能给我一个更好的方法来应对这个挑战的提示? 项目解释器是 CPython 2.7。我测试的 MCVE 是:

# -*- coding: utf-8 -*-

import timeit
import io
import array
import abc


class BaseBuffer:
    """A base abstract class for all buffers below"""
    __metaclass__ = abc.ABCMeta

    def __init__(self):
        pass

    def clear(self):
        old_val = self.value()
        self.__init__()
        return old_val

    @abc.abstractmethod
    def value(self):
        return self

    @abc.abstractmethod
    def write(self, symbol):
        pass


class ListBuffer(BaseBuffer):
    """Use lists as a storage"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = []

    def value(self):
        return u"".join(self.__io)

    def write(self, symbol):
        self.__io.append(symbol)


class StringBuffer(BaseBuffer):
    """Simply append to the stored string. Obviously unefficient due to strings immutability"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = u""

    def value(self):
        return self.__io

    def write(self, symbol):
        self.__io += symbol


class StringIoBuffer(BaseBuffer):
    """Use the io.StringIO object"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = io.StringIO()

    def value(self):
        return self.__io.getvalue()

    def write(self, symbol):
        self.__io.write(symbol)


class ArrayBuffer(BaseBuffer):
    """Preallocate an array"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = array.array("u", (u"\u0000" for _ in xrange(1000000)))
        self.__caret = 0

    def clear(self):
        val = self.value()
        self.__caret = 0
        return val

    def value(self):
        return u"".join(self.__io[n] for n in xrange(self.__caret))

    def write(self, symbol):
        self.__io[self.__caret] = symbol
        self.__caret += 1


def time_test():
    # Test distinct buffer data length
    for i in xrange(1000):
        for j in xrange(i):
            buffer_object.write(unicode(i % 10))
        buffer_object.clear()


if __name__ == '__main__':

    number_of_runs = 10
    for buffer_object in (ListBuffer(), StringIoBuffer(), StringBuffer(), ArrayBuffer()):
        print("Class {klass}: {elapsed:.2f}s per {number_of_runs} runs".format(
            klass=buffer_object.__class__.__name__,
            elapsed=timeit.timeit(stmt=time_test, number=number_of_runs),
            number_of_runs=number_of_runs,
        ))

...我为此 运行 得到的结果是:

Class ListBuffer: 1.88s per 10 runs
Class StringIoBuffer: 2.04s per 10 runs
Class StringBuffer: 2.40s per 10 runs
Class ArrayBuffer: 3.10s per 10 runs

我尝试了几个备选方案(见下文),但我无法胜过 ListBuffer 实施。我尝试过的事情:

非预分配数组

class ArrayBufferNoPreallocate(BaseBuffer):
    """array buffer"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = array.array("u")

    def value(self):
        return self.__io.tounicode()

    def write(self, symbol):
        self.__io.append(symbol)

麻木

class NumpyBuffer(BaseBuffer):
    """numpy array with pre-allocation"""
    def __init__(self):
        BaseBuffer.__init__(self)
        self.__io = np.zeros((1000000,), dtype=np.unicode_)
        self.__cursor = 0

    def clear(self):
        val = self.value()
        self.__cursor = 0
        return val

    def value(self):
        return np.char.join(u"", (self.__io[i] for i in xrange(self.__cursor)))

    def write(self, symbol):
        self.__io[self.__cursor] = symbol
        self.__cursor += 1

结果

Class ListBuffer: 3.40s per 10 runs
Class StringIoBuffer: 4.44s per 10 runs
Class StringBuffer: 4.58s per 10 runs
Class ArrayBuffer: 4.65s per 10 runs
Class ArrayBufferNoPreallocate: 3.94s per 10 runs
Class NumpyBuffer: 5.73s per 10 runs

如果你真的想要显着提高速度,你可能需要编写一个 c 扩展 或使用类似 cython.

如果您可以优化您的问题,使其不需要为每个字符调用一个函数,您也可以获得一些性能。