Spark Streaming:文本数据源只支持单列
Spark Streaming: Text data source supports only a single column
我正在使用 Kafka
数据,然后将数据流式传输到 HDFS
。
存储在Kafka
主题trial
中的数据如下:
hadoop
hive
hive
kafka
hive
但是,当我提交代码时,returns:
线程异常 "main"
org.apache.spark.sql.streaming.StreamingQueryException: Text data source supports only a single column, and you have 7 columns.;
=== Streaming Query ===
Identifier: [id = 2f3c7433-f511-49e6-bdcf-4275b1f1229a, runId = 9c0f7a35-118a-469c-990f-af00f55d95fb]
Current Committed Offsets: {KafkaSource[Subscribe[trial]]: {"trial":{"2":13,"1":13,"3":12,"0":13}}}
Current Available Offsets: {KafkaSource[Subscribe[trial]]: {"trial":{"2":13,"1":13,"3":12,"0":14}}}
我的问题是:如上所示,Kafka
中存储的数据只有一列,为什么程序说有7 columns
?
感谢任何帮助。
我的spark-streaming
代码:
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder.master("local[4]")
.appName("SpeedTester")
.config("spark.driver.memory", "3g")
.getOrCreate()
val ds = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "192.168.95.20:9092")
.option("subscribe", "trial")
.option("startingOffsets" , "earliest")
.load()
.writeStream
.format("text")
.option("path", "hdfs://192.168.95.21:8022/tmp/streaming/fixed")
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
}
在Structured Streaming + Kafka Integration Guide中有解释:
Each row in the source has the following schema:
Column Type
key binary
value binary
topic string
partition int
offset long
timestamp long
timestampType int
正好有七列。如果你只想写有效负载(值)select 它并转换为字符串:
spark.readStream
...
.load()
.selectExpr("CAST(value as string)")
.writeStream
...
.awaitTermination()
我正在使用 Kafka
数据,然后将数据流式传输到 HDFS
。
存储在Kafka
主题trial
中的数据如下:
hadoop
hive
hive
kafka
hive
但是,当我提交代码时,returns:
线程异常 "main"
org.apache.spark.sql.streaming.StreamingQueryException: Text data source supports only a single column, and you have 7 columns.;
=== Streaming Query ===
Identifier: [id = 2f3c7433-f511-49e6-bdcf-4275b1f1229a, runId = 9c0f7a35-118a-469c-990f-af00f55d95fb]
Current Committed Offsets: {KafkaSource[Subscribe[trial]]: {"trial":{"2":13,"1":13,"3":12,"0":13}}}
Current Available Offsets: {KafkaSource[Subscribe[trial]]: {"trial":{"2":13,"1":13,"3":12,"0":14}}}
我的问题是:如上所示,Kafka
中存储的数据只有一列,为什么程序说有7 columns
?
感谢任何帮助。
我的spark-streaming
代码:
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder.master("local[4]")
.appName("SpeedTester")
.config("spark.driver.memory", "3g")
.getOrCreate()
val ds = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "192.168.95.20:9092")
.option("subscribe", "trial")
.option("startingOffsets" , "earliest")
.load()
.writeStream
.format("text")
.option("path", "hdfs://192.168.95.21:8022/tmp/streaming/fixed")
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
}
在Structured Streaming + Kafka Integration Guide中有解释:
Each row in the source has the following schema:
Column Type
key binary
value binary
topic string
partition int
offset long
timestamp long
timestampType int
正好有七列。如果你只想写有效负载(值)select 它并转换为字符串:
spark.readStream
...
.load()
.selectExpr("CAST(value as string)")
.writeStream
...
.awaitTermination()