Pandas 通过在两个不同的 dataframes/pandas 中选择多个列来创建条件列

Pandas to create a conditional column by selecting multiple columns in two different dataframes/pandas

问题:我有2个数据框;

  1. df1 有 coil_id,sample_factor, 序列。每个 coil_id 有 449 条记录(范围 1-499)并且有大约 1000 个唯一的 coil_id。
  2. df2 有 coil_id、样本、量规。每个 coil_id 大约有 500 条记录(范围 10-5000;可以更少)并且具有与 df1 中相同的 1000 个唯一 coil_id。

df1:

+-------+-----------------
|coil_id|sample_factor|SEQ
+-------+-----------------
|E101634|10.4066      |  1
|E101634|20.8132      |  2
|E101634|31.2198      |  3 
|E101634|41.6264      |  4
|E101634|5220.033     |449

df2:

+-------+------+------+--
|coil_id|SAMPLE|GAUGE |
+-------+------+------+--
|E101634|    10|0.0565|
|E101634|    20|0.0569|
|E101634|    30|0.0567|
|E101634|    40|0.0561|
|E101634|  5000| 0.055|

由于记录数不同,我无法连接两个表。如果我这样做,我的样本值和量规会发生变化。所以我不应该加入。 接下来,我需要检查 df1.sample_factor 是否位于 df2.sample 和 df2.sample+1 之间,然后对仪表进行计算。 示例:(如果 10.4 位于 10 和 20 之间,则 0.0565+(((0.0569-0.0565)/10)*(10.4-10)) )基本上按比例计算仪表。

我想遍历 df1 中 Sample_factor 的每一行,并检查它是否位于 df2 中的 sample[i] 和 sample[i+1] 之间。然后对 gauge 进行 pro-rate 并将结果添加到 df1.

我试过这个:

def new_gauge : for row in df1('sample_factor'):
    if df1['sample_factor'] > df2['sample'] and df1['sample_factor'] < df2['sample'] + 1:
        return df2['gauge']+(((df2['gauge']+1)-df2['gauge'])/10)*(df1['sample_factor']-df2['sample']))
df1['new_gauge'] = df1.apply(new_gauge)

我知道它的语法完全错误,它只是为了了解我想要什么。

感谢任何帮助。谢谢:)

输出:

这是符合您预期输出的起始示例数据

df1

   coil_id  sample_factor  SEQ
0  E101634        10.4066    1
1  E101634        20.8132    2
2  E101634        31.2198    3
3  E101634        41.6264    4
4  E101634        52.0330    5
5  E101634        62.4396    6
6  E101634      5220.0330  449

df2

   coil_id  SAMPLE   GAUGE
0  E101634      10  0.0550
1  E101634      20  0.0568
2  E101634      30  0.0543
3  E101634      40  0.0531
4  E101634      50  0.0529
5  E101634      60  0.0519

第一步是merge_asof将样本因子带到最接近的样本。然后计算每一行的 new_gauge 列。但是,如果 sample_factor 落在当前行的值和下一行的值之间并且 coil_id 与它和下一行的值相同,我们只会实际分配一个值。

import pandas as pd

merged = pd.merge_asof(df2.assign(SAMPLE = df2.SAMPLE.astype('float')).sort_values('SAMPLE'), 
                       df1.sort_values('sample_factor'),
                       by='coil_id',
                       left_on='SAMPLE',
                       right_on='sample_factor',
                       direction='forward')
print(merged)
#   coil_id  SAMPLE   GAUGE  sample_factor  SEQ
#0  E101634    10.0  0.0550        10.4066    1
#1  E101634    20.0  0.0568        20.8132    2
#2  E101634    30.0  0.0543        31.2198    3
#3  E101634    40.0  0.0531        41.6264    4
#4  E101634    50.0  0.0529        52.0330    5
#5  E101634    60.0  0.0519        62.4396    6

# Now perform your calculation:
new_gauge = (merged.GAUGE.shift(1) 
             + ((merged.GAUGE - merged.GAUGE.shift(1))/10 
                 * (merged.sample_factor - merged.SAMPLE.shift(1))))

# Assign it only where it makes sense
# Assumes df2 was sorted on ['coil_id',  'SAMPLE']
mask = (merged.sample_factor.between(merged.SAMPLE, merged.SAMPLE.shift(-1)) 
        & (merged.coil_id == merged.coil_id.shift(-1)))

merged.loc[mask, 'new_gauge'] = new_gauge[mask] 

输出:merged

   coil_id  SAMPLE   GAUGE  sample_factor  SEQ  new_gauge
0  E101634    10.0  0.0550        10.4066    1        NaN
1  E101634    20.0  0.0568        20.8132    2   0.056946
2  E101634    30.0  0.0543        31.2198    3   0.053995
3  E101634    40.0  0.0531        41.6264    4   0.052905
4  E101634    50.0  0.0529        52.0330    5   0.052859
5  E101634    60.0  0.0519        62.4396    6        NaN

在这种情况下,我们没有分配最后一行,因为您提供的子集中没有 Sample > 60。