如何打印二叉树?
How to print binary tree?
我创建了一个基本上有二叉树的程序,我可以在其中 delete/insert 个节点。我也可以计算它的遍历,但我想以真实的形式打印树。我的意思是说。
该程序现在打印:1 2 3 4
我要打印:
1
/ \
2 3
/
4
这当然可以,但我时间不够。请提供此问题的解决方案。 (是的,我知道请求解决方案的次数很多)。
在我的代码中,我注释了调用打印结果的函数的行。评论看起来像这样“//我想把它打印成一棵树”
这些是计算和打印树的行。我只想制作它们,以便它们打印出一棵真正的树。
我的代码:
#include<stdlib.h>
#include<stdio.h>
struct node1
{
int key1;
struct node1 *left1, *right1;
};
// A utility function to create a new BST node1
struct node1 *newnode1(int item)
{
struct node1 *temp1 = (struct node1 *)malloc(sizeof(struct node1));
temp1->key1 = item;
temp1->left1 = temp1->right1 = NULL;
return temp1;
}
// A utility function to do inorder traversal of BST
void inorder(struct node1 *root1)
{
if (root1 != NULL)
{
inorder(root1->left1);
printf("%d ", root1->key1);
inorder(root1->right1);
}
}
/* A utility function to insert1 a new node1 with given key1 in BST */
struct node1* insert1(struct node1* node1, int key1)
{
/* If the tree is empty, return a new node1 */
if (node1 == NULL) return newnode1(key1);
/* Otherwise, recur down the tree */
if (key1 < node1->key1)
node1->left1 = insert1(node1->left1, key1);
else
node1->right1 = insert1(node1->right1, key1);
/* return the (unchanged) node1 pointer */
return node1;
}
/* Given a non-empty binary search tree, return the node1 with minimum
key1 value found in that tree. Note that the entire tree does not
need to be searched. */
struct node1 * minValuenode1(struct node1* node1)
{
struct node1* current = node1;
/* loop down to find the left1most leaf */
while (current->left1 != NULL)
current = current->left1;
return current;
}
/* Given a binary search tree and a key1, this function deletes the key1
and returns the new root1 */
struct node1* deletenode1(struct node1* root1, int key1)
{
// base case
if (root1 == NULL) return root1;
// If the key1 to be deleted is smaller than the root1's key1,
// then it lies in left1 subtree
if (key1 < root1->key1)
root1->left1 = deletenode1(root1->left1, key1);
// If the key1 to be deleted is greater than the root1's key1,
// then it lies in right1 subtree
else if (key1 > root1->key1)
root1->right1 = deletenode1(root1->right1, key1);
// if key1 is same as root1's key1, then This is the node1
// to be deleted
else
{
// node1 with only one child or no child
if (root1->left1 == NULL)
{
struct node1 *temp1 = root1->right1;
free(root1);
return temp1;
}
else if (root1->right1 == NULL)
{
struct node1 *temp1 = root1->left1;
free(root1);
return temp1;
}
// node1 with two children: Get the inorder successor (smallest
// in the right1 subtree)
struct node1* temp1 = minValuenode1(root1->right1);
// Copy the inorder successor's content to this node1
root1->key1 = temp1->key1;
// Delete the inorder successor
root1->right1 = deletenode1(root1->right1, temp1->key1);
}
return root1;
}
struct bin_tree {
int data;
struct bin_tree * right, * left;
};
typedef struct bin_tree node;
void insert(node ** tree, int val)
{
node *temp = NULL;
if(!(*tree))
{
temp = (node *)malloc(sizeof(node));
temp->left = temp->right = NULL;
temp->data = val;
*tree = temp;
return;
}
if(val < (*tree)->data)
{
insert(&(*tree)->left, val);
}
else if(val > (*tree)->data)
{
insert(&(*tree)->right, val);
}
}
void print_preorder(node * tree)
{
if (tree)
{
printf("%d\n",tree->data);
print_preorder(tree->left);
print_preorder(tree->right);
}
}
void print_inorder(node * tree)
{
if (tree)
{
print_inorder(tree->left);
printf("%d\n",tree->data);
print_inorder(tree->right); // i want to print this as a tree
}
}
void print_postorder(node * tree)
{
if (tree)
{
print_postorder(tree->left);
print_postorder(tree->right);
printf("%d\n",tree->data);
}
}
void deltree(node * tree)
{
if (tree)
{
deltree(tree->left);
deltree(tree->right);
free(tree);
}
}
node* search(node ** tree, int val)
{
if(!(*tree))
{
return NULL;
}
if(val < (*tree)->data)
{
search(&((*tree)->left), val);
}
else if(val > (*tree)->data)
{
search(&((*tree)->right), val);
}
else if(val == (*tree)->data)
{
return *tree;
}
}
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */
insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);
insert(&root, 0);
/* Printing nodes of tree */
printf("Pre Order Display\n");
print_preorder(root); // i want to print this as a tree
printf("In Order Display\n");
print_inorder(root); // i want to print this as a tree
printf("Post Order Display\n");
print_postorder(root); // i want to print this as a tree
/* Search node into tree */
tmp = search(&root, 4);
if (tmp)
{
printf("Searched node=%d\n", tmp->data);
}
else
{
printf("Data Not found in tree.\n");
}
struct node1 *root1 = NULL; // these
root1 = insert1(root1, 50);// lines
root1 = insert1(root1, 30);// delete a
root1 = insert1(root1, 20);//node
root1 = insert1(root1, 40);//and
root1 = insert1(root1, 70);//then prints
root1 = insert1(root1, 60);//it
root1 = insert1(root1, 80);//
root1 = deletenode1(root1, 50); //
inorder(root1); // i want to print this as a tree
/* Deleting all nodes of tree */
deltree(root);
}
问题是您需要 2^maxDepth
方框才能正确绘制节点。
根绘制在 (0,(2^maxDepth)/2)
点和
((1,(parent node position)/2), ((parent node positon)/2, 1)
位置的后续子节点。
考虑下面的示例代码。
int maxDepth(node* node)
{
if (node==NULL)
return 0;
else
{
/* compute the depth of each subtree */
int lDepth = maxDepth(node->left);
int rDepth = maxDepth(node->right);
/* use the larger one */
if (lDepth > rDepth)
return(lDepth+1);
else return(rDepth+1);
}
}
void drawTree(node *node)
{
int maxdepth = maxDepth(node);
int numSpace = pow(2,maxdepth)+1;
int i = 0;
for (i = 0;i < maxdepth;i++)
{
printGraph(node, numSpace, 1, i, 0);
numSpace /=2;
printf("\n");
}
}
int printGraph(node *node, int numSpace,int isLeft, int expectedLevel, int currentLevel)
{
int i = 0;
if (node == NULL || currentLevel > expectedLevel)
{
for (i = 0;i<(numSpace)/2;i++) printf(" ");
return -1;
}
if (expectedLevel == currentLevel)
{
for (i = 0;i<(numSpace)/2;i++) printf(" ");
printf("%d", node->data);
}
else
{
printGraph(node->left, numSpace, 1, expectedLevel, currentLevel+1);
for (i = 0;i<(numSpace)/2;i++) printf(" ");
printGraph(node->right, (numSpace), 0, expectedLevel, currentLevel+1);
return ret;
}
}
然后我从 main
调用 drawTree
,如下所示。
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */
insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);
insert(&root, 0);
insert(&root, 7);
insert(&root, 16);
insert(&root, 18);
drawTree(root);
deltree(root);
}
示例输出:
9
4 15
2 6 12 17
0 7 16 18
Note: Now go ahead with adding edges to the nodes with the same
approach.
我创建了一个基本上有二叉树的程序,我可以在其中 delete/insert 个节点。我也可以计算它的遍历,但我想以真实的形式打印树。我的意思是说。 该程序现在打印:1 2 3 4
我要打印:
1
/ \
2 3
/
4
这当然可以,但我时间不够。请提供此问题的解决方案。 (是的,我知道请求解决方案的次数很多)。 在我的代码中,我注释了调用打印结果的函数的行。评论看起来像这样“//我想把它打印成一棵树” 这些是计算和打印树的行。我只想制作它们,以便它们打印出一棵真正的树。
我的代码:
#include<stdlib.h>
#include<stdio.h>
struct node1
{
int key1;
struct node1 *left1, *right1;
};
// A utility function to create a new BST node1
struct node1 *newnode1(int item)
{
struct node1 *temp1 = (struct node1 *)malloc(sizeof(struct node1));
temp1->key1 = item;
temp1->left1 = temp1->right1 = NULL;
return temp1;
}
// A utility function to do inorder traversal of BST
void inorder(struct node1 *root1)
{
if (root1 != NULL)
{
inorder(root1->left1);
printf("%d ", root1->key1);
inorder(root1->right1);
}
}
/* A utility function to insert1 a new node1 with given key1 in BST */
struct node1* insert1(struct node1* node1, int key1)
{
/* If the tree is empty, return a new node1 */
if (node1 == NULL) return newnode1(key1);
/* Otherwise, recur down the tree */
if (key1 < node1->key1)
node1->left1 = insert1(node1->left1, key1);
else
node1->right1 = insert1(node1->right1, key1);
/* return the (unchanged) node1 pointer */
return node1;
}
/* Given a non-empty binary search tree, return the node1 with minimum
key1 value found in that tree. Note that the entire tree does not
need to be searched. */
struct node1 * minValuenode1(struct node1* node1)
{
struct node1* current = node1;
/* loop down to find the left1most leaf */
while (current->left1 != NULL)
current = current->left1;
return current;
}
/* Given a binary search tree and a key1, this function deletes the key1
and returns the new root1 */
struct node1* deletenode1(struct node1* root1, int key1)
{
// base case
if (root1 == NULL) return root1;
// If the key1 to be deleted is smaller than the root1's key1,
// then it lies in left1 subtree
if (key1 < root1->key1)
root1->left1 = deletenode1(root1->left1, key1);
// If the key1 to be deleted is greater than the root1's key1,
// then it lies in right1 subtree
else if (key1 > root1->key1)
root1->right1 = deletenode1(root1->right1, key1);
// if key1 is same as root1's key1, then This is the node1
// to be deleted
else
{
// node1 with only one child or no child
if (root1->left1 == NULL)
{
struct node1 *temp1 = root1->right1;
free(root1);
return temp1;
}
else if (root1->right1 == NULL)
{
struct node1 *temp1 = root1->left1;
free(root1);
return temp1;
}
// node1 with two children: Get the inorder successor (smallest
// in the right1 subtree)
struct node1* temp1 = minValuenode1(root1->right1);
// Copy the inorder successor's content to this node1
root1->key1 = temp1->key1;
// Delete the inorder successor
root1->right1 = deletenode1(root1->right1, temp1->key1);
}
return root1;
}
struct bin_tree {
int data;
struct bin_tree * right, * left;
};
typedef struct bin_tree node;
void insert(node ** tree, int val)
{
node *temp = NULL;
if(!(*tree))
{
temp = (node *)malloc(sizeof(node));
temp->left = temp->right = NULL;
temp->data = val;
*tree = temp;
return;
}
if(val < (*tree)->data)
{
insert(&(*tree)->left, val);
}
else if(val > (*tree)->data)
{
insert(&(*tree)->right, val);
}
}
void print_preorder(node * tree)
{
if (tree)
{
printf("%d\n",tree->data);
print_preorder(tree->left);
print_preorder(tree->right);
}
}
void print_inorder(node * tree)
{
if (tree)
{
print_inorder(tree->left);
printf("%d\n",tree->data);
print_inorder(tree->right); // i want to print this as a tree
}
}
void print_postorder(node * tree)
{
if (tree)
{
print_postorder(tree->left);
print_postorder(tree->right);
printf("%d\n",tree->data);
}
}
void deltree(node * tree)
{
if (tree)
{
deltree(tree->left);
deltree(tree->right);
free(tree);
}
}
node* search(node ** tree, int val)
{
if(!(*tree))
{
return NULL;
}
if(val < (*tree)->data)
{
search(&((*tree)->left), val);
}
else if(val > (*tree)->data)
{
search(&((*tree)->right), val);
}
else if(val == (*tree)->data)
{
return *tree;
}
}
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */
insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);
insert(&root, 0);
/* Printing nodes of tree */
printf("Pre Order Display\n");
print_preorder(root); // i want to print this as a tree
printf("In Order Display\n");
print_inorder(root); // i want to print this as a tree
printf("Post Order Display\n");
print_postorder(root); // i want to print this as a tree
/* Search node into tree */
tmp = search(&root, 4);
if (tmp)
{
printf("Searched node=%d\n", tmp->data);
}
else
{
printf("Data Not found in tree.\n");
}
struct node1 *root1 = NULL; // these
root1 = insert1(root1, 50);// lines
root1 = insert1(root1, 30);// delete a
root1 = insert1(root1, 20);//node
root1 = insert1(root1, 40);//and
root1 = insert1(root1, 70);//then prints
root1 = insert1(root1, 60);//it
root1 = insert1(root1, 80);//
root1 = deletenode1(root1, 50); //
inorder(root1); // i want to print this as a tree
/* Deleting all nodes of tree */
deltree(root);
}
问题是您需要 2^maxDepth
方框才能正确绘制节点。
根绘制在 (0,(2^maxDepth)/2)
点和
((1,(parent node position)/2), ((parent node positon)/2, 1)
位置的后续子节点。
考虑下面的示例代码。
int maxDepth(node* node)
{
if (node==NULL)
return 0;
else
{
/* compute the depth of each subtree */
int lDepth = maxDepth(node->left);
int rDepth = maxDepth(node->right);
/* use the larger one */
if (lDepth > rDepth)
return(lDepth+1);
else return(rDepth+1);
}
}
void drawTree(node *node)
{
int maxdepth = maxDepth(node);
int numSpace = pow(2,maxdepth)+1;
int i = 0;
for (i = 0;i < maxdepth;i++)
{
printGraph(node, numSpace, 1, i, 0);
numSpace /=2;
printf("\n");
}
}
int printGraph(node *node, int numSpace,int isLeft, int expectedLevel, int currentLevel)
{
int i = 0;
if (node == NULL || currentLevel > expectedLevel)
{
for (i = 0;i<(numSpace)/2;i++) printf(" ");
return -1;
}
if (expectedLevel == currentLevel)
{
for (i = 0;i<(numSpace)/2;i++) printf(" ");
printf("%d", node->data);
}
else
{
printGraph(node->left, numSpace, 1, expectedLevel, currentLevel+1);
for (i = 0;i<(numSpace)/2;i++) printf(" ");
printGraph(node->right, (numSpace), 0, expectedLevel, currentLevel+1);
return ret;
}
}
然后我从 main
调用 drawTree
,如下所示。
void main()
{
node *root;
node *tmp;
//int i;
root = NULL;
/* Inserting nodes into tree */
insert(&root, 9);
insert(&root, 4);
insert(&root, 15);
insert(&root, 6);
insert(&root, 12);
insert(&root, 17);
insert(&root, 2);
insert(&root, 0);
insert(&root, 7);
insert(&root, 16);
insert(&root, 18);
drawTree(root);
deltree(root);
}
示例输出:
9
4 15
2 6 12 17
0 7 16 18
Note: Now go ahead with adding edges to the nodes with the same approach.