无法标记数据框中的多列

Unable to tokenize multiple columns in a dataframe

我有一个 table,其中包含数字和字符串数据,但在不同的列中。 table 是对 Web 表单的回答,包含空单元格。我想在字符串列上使用文本处理。我不能删除带有空单元格的行,所以对于空字符串列,我用 aplhabet 'a'.

替换了 NaN

示例数据

colmun_name1    column_name2     column_name3 column_name4 classify
This is a cat   This is a dog    1            2            0
This is a rat   This is a mouse  45           32           1
a               Good mouse       0            0            0 

我使用以下代码来确保字符串列中的所有数据实际上都是字符串数据。

df2=df[[column_name1, column_name2]]
for i in range(0,len(df2)):
cell=df2.iloc[i]
cell=str(str)
df2.iloc[i]=cell

然后当我标记化时,出现错误

    <ipython-input-64-24a99733ba19> in <module>
      1 from nltk.tokenize import word_tokenize
----> 2 tokenized_word=word_tokenize(df2)
      3 print(tokenized_word)

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/__init__.py in word_tokenize(text, language, preserve_line)
    126     :type preserver_line: bool
    127     """
--> 128     sentences = [text] if preserve_line else sent_tokenize(text, language)
    129     return [token for sent in sentences
    130             for token in _treebank_word_tokenizer.tokenize(sent)]

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/__init__.py in sent_tokenize(text, language)
     93     """
     94     tokenizer = load('tokenizers/punkt/{0}.pickle'.format(language))
---> 95     return tokenizer.tokenize(text)
     96 
     97 # Standard word tokenizer.

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in tokenize(self, text, realign_boundaries)
   1239         Given a text, returns a list of the sentences in that text.
   1240         """
-> 1241         return list(self.sentences_from_text(text, realign_boundaries))
   1242 
   1243     def debug_decisions(self, text):

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in sentences_from_text(self, text, realign_boundaries)
   1289         follows the period.
   1290         """
-> 1291         return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
   1292 
   1293     def _slices_from_text(self, text):

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in <listcomp>(.0)
   1289         follows the period.
   1290         """
-> 1291         return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
   1292 
   1293     def _slices_from_text(self, text):

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in span_tokenize(self, text, realign_boundaries)
   1279         if realign_boundaries:
   1280             slices = self._realign_boundaries(text, slices)
-> 1281         for sl in slices:
   1282             yield (sl.start, sl.stop)
   1283 

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in _realign_boundaries(self, text, slices)
   1320         """
   1321         realign = 0
-> 1322         for sl1, sl2 in _pair_iter(slices):
   1323             sl1 = slice(sl1.start + realign, sl1.stop)
   1324             if not sl2:

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in _pair_iter(it)
    311     """
    312     it = iter(it)
--> 313     prev = next(it)
    314     for el in it:
    315         yield (prev, el)

/anaconda3/lib/python3.6/site-packages/nltk/tokenize/punkt.py in _slices_from_text(self, text)
   1293     def _slices_from_text(self, text):
   1294         last_break = 0
-> 1295         for match in self._lang_vars.period_context_re().finditer(text):
   1296             context = match.group() + match.group('after_tok')
   1297             if self.text_contains_sentbreak(context):

TypeError: expected string or bytes-like object

我试过改变

df2=df[column_name1][column_name2]

但是我得到了同样的错误。

我该怎么办?

我认为你的错误很简单,将 cell=str(str) 替换为 cell=str(cell)

此外,您还需要正确的缩进,并且不能连续调用 str,只能在单个单元格上调用。所以你的代码应该看起来像这个最小的例子

import pandas as pd

data_dict = {'a':[l for l in 'aakjnasnkdf']+[None], 
               'b':[l for l in 'aakjnasnkdf']+[1], 
               'c':range(12)}

df=pd.DataFrame(data_dict)

column_name1 ='a'
column_name2 =  'b'
df2=df.loc[:,[column_name1, column_name2]]

for i in range(0,len(df2)):
    cell1, cell2 = df2.iloc[i]
    cell1=str(cell1)
    cell2 = str(cell2)
    df2.iloc[i]=[cell1,cell2]

请参阅

TL;DR

# Creates a `colmun_name1_tokenized` column by 
# taking the `colmun_name1` column and 
# applying the word_tokenize function on every cell in the column. 

>>> df['colmun_name1_tokenized'] = df['colmun_name1'].apply(word_tokenize)

>>> df.head()
    colmun_name1     column_name2  column_name3  column_name4  classify  \
0  This is a cat    This is a dog             1             2         0   
1  This is a rat  This is a mouse            45            32         1   
2              a       Good mouse             0             0         0   

  colmun_name1_tokenized  
0     [This, is, a, cat]  
1     [This, is, a, rat]  
2                    [a]  

如果您需要对不止一列进行标记化,并且您想用标记化的输出覆盖该列:

>>> with StringIO(file_str) as fin:
...     df = pd.read_csv(fin, sep='\t')
... 
>>> for col_name in ['colmun_name1', 'column_name2']:
...     df[col_name] = df[col_name].apply(word_tokenize)
... 
>>> df.head()
         colmun_name1          column_name2  column_name3  column_name4  \
0  [This, is, a, cat]    [This, is, a, dog]             1             2   
1  [This, is, a, rat]  [This, is, a, mouse]            45            32   
2                 [a]         [Good, mouse]             0             0   

   classify  
0         0  
1         1  
2         0  

只是代码:

from io import StringIO

import pandas as pd

from nltk import word_tokenize

file_str = """colmun_name1\tcolumn_name2\tcolumn_name3\tcolumn_name4\tclassify
This is a cat\tThis is a dog\t1\t2\t0
This is a rat\tThis is a mouse\t45\t32\t1
a\tGood mouse\t0\t0\t0 """

with StringIO(file_str) as fin:
    df = pd.read_csv(fin, sep='\t')

for col_name in ['colmun_name1', 'column_name2']:
    df[col_name] = df[col_name].apply(word_tokenize)