仅使用 tidyverse 计算平均占用率

Calculating the Average Occupancy with tidyverse only

我仅使用 tidyverse 计算一天中几个小时的平均到达人数和平均入住人数。

然而,上面的例子实际上并没有计算平均入住率,而是计算了特定时间的人数。

然而,如果我有一个人要来,比如说在医院,急诊室,2018 年 12 月 10 日上午 10 点到达,第二天 7:45 离开。这意味着从上午 10 点一直到第二天早上 7 点(不包括上午 8 点和 9 点),入住率的值为 1.00 个患者。对两个日期的占用率取平均值,这意味着从患者到达之日上午 10 点到患者出院后第二天早上 7 点的所有时间,占用率为 0.5,不包括上午 8 点和上午 9 点(平均值为 0) . Arrivals 也是如此,不同之处在于它只计算患者到达的时间,而不是他们停留的所有时间。这就是 Occupancy 和 Arrivals 之间的区别,这似乎是我之前的帮助请求中给出的所有答案都解决了 Arrivals 平均值而不是 Occupancy,尽管我请求的是 Averaged Occupancy。

这是我过去试图解决的一个例子。

我在下面重现。

df <- structure(list(ID = c(101, 102, 103, 104, 105, 106, 107), Adm = 
       structure(c(1326309720, 1326309900, 1328990700, 1328997240, 
                   1329000840, 1329004440, 1329004680), 
       class = c("POSIXct", "POSIXt"), tzone = ""), Disc = 
       structure(c(1326313800, 1326317340, 1326317460, 1326324660, 
                   1326328260, 1 326335460, 1326335460), 
       class = c("POSIXct", "POSIXt"), tzone = "")), 
       .Names = c("ID", "Adm", "Disc"),  
       row.names = c(NA, -7L), class = "data.frame")

library(tidyverse)

df %>%
  group_by(ID) %>%
  mutate(occupancy = ifelse(last(Disc) > first(Adm) + 60*60, 1, 0))

这是一个极简的例子,为了简单起见,这是我有的可重现的数据类型。然而,出于数据保护的原因,不能透露原始数据中的任何数据。

df <- structure(list(ID = 101:103, 
                    `Admissions <- as.POSIXct(c("2018-12-10 09:30:00", 
                                     "2018-12-10 10:15:00", 
                                     "2018-12-11 08:05:00"), 
                                  tz =  "Europe/London")` = 
                    structure(c(1544434200, 1544436900, 1544519100), 
                    class = c("POSIXct", "POSIXt"), 
                    tzone = "Europe/London"), 
                    `Discharges <- as.POSIXct(c("2018-12-10 12:30:00", 
                                      "2018-12-11 07:45:00", 
                                      "2018-12-11 09:05-00"),             
                                   tz = "Europe/London")` = 
                   structure(c(1544445000, 1544514300, 1544519100), 
                   class = c("POSIXct", "POSIXt"), 
                   tzone = "Europe/London")), row.names = c(NA, -3L), 
                   class = c("tbl_df", "tbl", "data.frame"))

预期的输出是:

output <- structure(list(
       Hour = 0:23, 
       Average_arrivals = c(0, 0, 0, 0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, 
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
       Average_occ = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0.5, 1, 
                       1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
                       0.5, 0.5)), 
       row.names = c(NA, -24L), class = c("tbl_df", "tbl", "data.frame"), 
       spec = structure(list(cols = list(X1 = 
       structure(list(), class = c("collector_integer", "collector")), 
       Hour = structure(list(), class =c("collector_integer","collector")),
       Average_arrivals = structure(list(), 
                          class = c("collector_double", "collector")), 
       Average_occ = structure(list(), class = c("collector_double", 
                                                 "collector"))), 
                     default = structure(list(), 
                     class = c("collector_guess","collector"))), 
                     class = "col_spec"))

这是一种使用 tidyverse 的方法。首先,我使用 gather 转换为长格式,然后创建一个 "change" 列,该列为入院时为 +1,出院时为 -1。

然后我按小时总结(可以更细化,如果需要的话,比如“5 分钟”)并使用 padr:pad 添加所有未提及的小时数(我还在后面添加额外的小时数)全套48小时)。

那么占用率就是变化的累积总和。通过在 2 天内按小时分组,我们可以得到 Average_arrivals 和 Average_occ。

数据

# Note, I could not load the sample data as provided, as the variable
#   names included the desired data as text.
df <- data.frame(ID = 101:103,
                 Admissions = as.POSIXct(c("2018-12-10 09:30:00", 
                    "2018-12-10 10:15:00", "2018-12-11 08:05:00")),
                 Discharges = as.POSIXct(c("2018-12-10 12:30:00", 
                    "2018-12-11 07:45:00", "2018-12-11 09:05:00")))

解决方案

df_flat <- df %>%
  gather(status, time, Admissions:Discharges) %>%
  mutate(change = if_else(status == "Admissions", 1, -1)) %>%
  group_by(time_hr = lubridate::floor_date(time, "1 hour")) %>%
  summarize(arrivals = sum(status == "Admissions"),
            change = sum(change)) %>%
  # Here, adding add'l rows so all hours have 2 instances
  padr::pad(end_val = min(.$time_hr) + dhours(47)) %>% 
  replace_na(list(arrivals = 0, change = 0)) %>%
  mutate(occupancy = cumsum(change))

output <- df_flat %>%
  group_by(hour(time_hr)) %>%
  summarize(Average_arrivals = mean(arrivals),
            Average_occ = mean(occupancy))

输出

output
# A tibble: 24 x 3
# hour Average_arrivals Average_occ
# <int>            <dbl>       <dbl>
# 1     0              0           0.5
# 2     1              0           0.5
# 3     2              0           0.5
# 4     3              0           0.5
# 5     4              0           0.5
# 6     5              0           0.5
# 7     6              0           0.5
# 8     7              0           0  
# 9     8              0.5         0.5
# 10    9              0.5         0.5