正确设计 Multiprocessing.Manager 自定义对象

Properly Designing a Multiprocessing.Manager Custom Object

我想使用 multiprocessing.Manager() 对象,这样我就可以将信息从工作人员异步发送到管理器,从而将信息发送到服务器。我有大约 10 个实例将 PDF 写入磁盘。然后我想使用多处理包中的管理器对象将该数据发送到我的 S3 存储桶,因为我不想阻止本地内容生成。

所以我想知道如果我创建一个自定义管理器对象,这是执行此操作的正确方法吗?提交给管理器对象的每个进程都会排队吗?或者如果我调用多个上传,管理员会挂断一些调用吗?

下面是我想做的事情的示例代码:

from multiprocessing.managers import BaseManager

class UploadClass(object):
    def upload(self, filePath, params, destUrl):
        # do stuff
        return results

class MyManager(BaseManager):
    pass

MyManager.register('uploads', UploadClass)

if __name__ == '__main__':
    manager = MyManager()
    manager.start()
    upload = manager.uploads()
    # do this wait for completion or do they perform this async
    print upload.upload(r"< path >", {...}, "some url")
    print upload.upload(r"< path >", {...}, "some url")

直接回答您的一些问题:

Will each process submitted to the manager object get queued?

Manager 服务器生成一个新线程来处理每个传入请求,因此您的所有请求都将立即开始处理。你可以在 multiprocessing/managers.py:

里面看到这个
def serve_forever(self):
    '''
    Run the server forever
    '''
    current_process()._manager_server = self
    try:
        try:
            while 1:
                try:
                    c = self.listener.accept()
                except (OSError, IOError):
                    continue
                t = threading.Thread(target=self.handle_request, args=(c,))
                t.daemon = True
                t.start()
        except (KeyboardInterrupt, SystemExit):
            pass
    finally:
        self.stop = 999
        self.listener.close()

if I call multiple uploads, will the manager drop some of the calls?

不,none 个呼叫将被挂断。

# do this wait for completion or do they perform this async
print upload.upload(r"< path >", {...}, "some url")
print upload.upload(r"< path >", {...}, "some url")

upload.upload 的两次调用将是同步的;在 UploadClass.upload 完成之前,他们不会 return。但是,如果您有多个 scripts/threads/processes 并发调用 upload.upload,则每个唯一的调用将同时发生在 Manager 服务器进程中它自己的线程内。

你最重要的问题是:

is this the proper way to do this?

如果我正确理解这个问题,我会说不。如果您只有一个脚本,然后在该脚本中生成十个 multiprocessing.Process 实例来写出 PDF,那么您应该只使用另一个 multiprocessing.Process 来处理上传:

def upload(self, q):
    for payload in iter(q.get, None):  # Keep getting from the queue until a None is found
        filePath, params, destUrl = payload
        # do stuff

def write_pdf(pdf_file_info, q):
   # write a pdf to disk here
   q.put((filepath, params, destUrl))  # Send work to the uploader
   # Move on with whatever comes next.

if __name__ == '__main__':
    pdf_queue = multiprocessing.Queue()

    # Start uploader
    upload_proc = multiprocessing.Process(upload, args=(pdf_queue,))
    upload_proc.start()

    # Start pdf writers
    procs = []
    for pdf in pdfs_to_write: 
         p = multiprocessing.Process(write_pdf, args=(pdf, pdf_queue))
         p.start()
         p.append(procs)

    # Wait for pdf writers and uploader to finish.
    for p in procs:
        p.join()
    pdf_queue.put(None) # Sending None breaks the for loop inside upload
    upload_proc.join()

如果您真的可以并发上传,那么根本不需要单独的 upload 过程 - 直接从 pdf 编写过程上传即可。

不过,很难从你的问题中判断这是否正是你正在做的。一旦您澄清,我将调整最后一块以适合您的特定用例。