如何计算形状相交的多边形数量?
How can I count the number of polygons a shape intersects?
我有一个非常大的数据集,其中包含多边形和周围带有缓冲区的点。我想在点数据中创建一个新列,其中包括点缓冲区相交的多边形数量。
这是一个简化的例子:
import pandas as pd
import geopandas as gp
from shapely.geometry import Polygon
from shapely.geometry import Point
import matplotlib.pyplot as plt
## Create polygons and points ##
df = gp.GeoDataFrame([['a',Polygon([(1, 0), (1, 1), (2,2), (1,2)])],
['b',Polygon([(1, 0.25), (2,1.25), (3,0.25)])]],
columns = ['name','geometry'])
df = gp.GeoDataFrame(df, geometry = 'geometry')
points = gp.GeoDataFrame( [['box', Point(1.5, 1.115), 4],
['triangle', Point(2.5,1.25), 8]],
columns=['name', 'geometry', 'value'],
geometry='geometry')
##Set a buffer around the points##
buf = points.buffer(0.5)
points['buffer'] = buf
points = points.drop(['geometry'], axis = 1)
points = points.rename(columns = {'buffer': 'geometry'})
此数据如下所示:
我想做的是在点数据框中创建另一列,其中包括点相交的多边形数量。
我试过这样使用 for 循环:
points['intersect'] = []
for geo1 in points['geometry']:
for geo2 in df['geometry']:
if geo1.intersects(geo2):
points['intersect'].append('1')
然后我会将其相加以获得相交的总数。
但是,我收到错误:'Length of values does not match length of index'。我知道这是因为它试图将三行数据分配给只有两行的框架。
如何汇总计数,以便为第一个点分配值 2,为第二个点分配值 1?
如果你有大数据集,我会使用 rtree 空间索引来解决问题,就像这样。
import pandas as pd
import geopandas as gp
from shapely.geometry import Polygon
from shapely.geometry import Point
import matplotlib.pyplot as plt
## Create polygons and points ##
df = gp.GeoDataFrame([['a',Polygon([(1, 0), (1, 1), (2,2), (1,2)])],
['b',Polygon([(1, 0.25), (2,1.25), (3,0.25)])]],
columns = ['name','geometry'])
df = gp.GeoDataFrame(df, geometry = 'geometry')
points = gp.GeoDataFrame( [['box', Point(1.5, 1.115), 4],
['triangle', Point(2.5,1.25), 8]],
columns=['name', 'geometry', 'value'],
geometry='geometry')
# generate spatial index
sindex = df.sindex
# define empty list for results
results_list = []
# iterate over the points
for index, row in points.iterrows():
buffer = row['geometry'].buffer(0.5) # buffer
# find approximate matches with r-tree, then precise matches from those approximate ones
possible_matches_index = list(sindex.intersection(buffer.bounds))
possible_matches = df.iloc[possible_matches_index]
precise_matches = possible_matches[possible_matches.intersects(buffer)]
results_list.append(len(precise_matches))
# add list of results as a new column
points['polygons'] = pd.Series(results_list)
我有一个非常大的数据集,其中包含多边形和周围带有缓冲区的点。我想在点数据中创建一个新列,其中包括点缓冲区相交的多边形数量。
这是一个简化的例子:
import pandas as pd
import geopandas as gp
from shapely.geometry import Polygon
from shapely.geometry import Point
import matplotlib.pyplot as plt
## Create polygons and points ##
df = gp.GeoDataFrame([['a',Polygon([(1, 0), (1, 1), (2,2), (1,2)])],
['b',Polygon([(1, 0.25), (2,1.25), (3,0.25)])]],
columns = ['name','geometry'])
df = gp.GeoDataFrame(df, geometry = 'geometry')
points = gp.GeoDataFrame( [['box', Point(1.5, 1.115), 4],
['triangle', Point(2.5,1.25), 8]],
columns=['name', 'geometry', 'value'],
geometry='geometry')
##Set a buffer around the points##
buf = points.buffer(0.5)
points['buffer'] = buf
points = points.drop(['geometry'], axis = 1)
points = points.rename(columns = {'buffer': 'geometry'})
此数据如下所示:
我试过这样使用 for 循环:
points['intersect'] = []
for geo1 in points['geometry']:
for geo2 in df['geometry']:
if geo1.intersects(geo2):
points['intersect'].append('1')
然后我会将其相加以获得相交的总数。 但是,我收到错误:'Length of values does not match length of index'。我知道这是因为它试图将三行数据分配给只有两行的框架。
如何汇总计数,以便为第一个点分配值 2,为第二个点分配值 1?
如果你有大数据集,我会使用 rtree 空间索引来解决问题,就像这样。
import pandas as pd
import geopandas as gp
from shapely.geometry import Polygon
from shapely.geometry import Point
import matplotlib.pyplot as plt
## Create polygons and points ##
df = gp.GeoDataFrame([['a',Polygon([(1, 0), (1, 1), (2,2), (1,2)])],
['b',Polygon([(1, 0.25), (2,1.25), (3,0.25)])]],
columns = ['name','geometry'])
df = gp.GeoDataFrame(df, geometry = 'geometry')
points = gp.GeoDataFrame( [['box', Point(1.5, 1.115), 4],
['triangle', Point(2.5,1.25), 8]],
columns=['name', 'geometry', 'value'],
geometry='geometry')
# generate spatial index
sindex = df.sindex
# define empty list for results
results_list = []
# iterate over the points
for index, row in points.iterrows():
buffer = row['geometry'].buffer(0.5) # buffer
# find approximate matches with r-tree, then precise matches from those approximate ones
possible_matches_index = list(sindex.intersection(buffer.bounds))
possible_matches = df.iloc[possible_matches_index]
precise_matches = possible_matches[possible_matches.intersects(buffer)]
results_list.append(len(precise_matches))
# add list of results as a new column
points['polygons'] = pd.Series(results_list)