我如何正确处理多维 numpy 数组
how do i correctly handle a multi dimensional numpy array
我是一个 Python 新手,在 for 循环中使用多维数组有点吃力。我有的是:
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
...
...
idxs = np.argsort(preds[0])[::-1][:5]
print(idxs)
#loop over top 5 predictions & display them
for (i, idx) in enumerate(idxs):
# draw the top prediction on the input image
print (idx)
if i == 0:
print (preds)
text = "Label: {}, {:.2f}%".format(CLASSES[idx], preds[0][idx] * 100)
cv2.putText(frame, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)
# display the predicted label + associated probability to the
# console
print("[INFO] {}. label: {}, probability: {:.5}".format(i + 1,CLASSES[idx], preds[0][idx]))
我得到类似的东西:
[[[ 0. 7. 0.3361728 0.2269333 0.6589312
0.70067763 0.8960621 ]
[ 0. 15. 0.44955394 0.5509065 0.4315516
0.6530549 0.7223625 ]]]
[[[0 3 2 4 5 6 1]
[0 4 2 3 5 6 1]]]
[[0 3 2 4 5 6 1]
[0 4 2 3 5 6 1]]
[[[[ 0. 7. 0.3361728 0.2269333 0.6589312
0.70067763 0.8960621 ]
[ 0. 15. 0.44955394 0.5509065 0.4315516
0.6530549 0.7223625 ]]]]
Traceback (most recent call last):
File "real_time_object_detection.py", line 80, in <module>
text = "Label: {}, {:.2f}%".format(CLASSES[idx], preds[0][idx] * 100)
TypeError: only integer scalar arrays can be converted to a scalar index
我从 https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/ 复制了这段代码,但看起来我做错了什么,因为 idx
应该是一个 int
而不是一个数组
更新:
我试图弄清楚这里发生了什么,但我遇到了以下问题:为什么所有 argsort 调用都给出相同的结果? :o
>>> preds[0] = [[[ 0., 7., 0.3361728, 0.2269333, 0.6589312,0.70067763, 0.8960621 ],[ 0., 15., 0.44955394, 0.5509065, 0.4315516,0.6530549, 0.7223625 ]]]
>>> print(preds[0])
[[[0.0, 7.0, 0.3361728, 0.2269333, 0.6589312, 0.70067763, 0.8960621], [0.0, 15.0, 0.44955394, 0.5509065, 0.4315516, 0.6530549, 0.7223625]]]
>>> import numpy as np
>>> np.argsort(preds[0])
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
>>> np.argsort(preds[0])[::-1]
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
>>> np.argsort(preds[0])[::-1][:5]
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
另外为什么它似乎改变了数据,它不应该只是排序吗?
你的preds[0]
,赋值给变量名的是一个3d数组:
In [449]: preds0 = np.array([[[ 0., 7., 0.3361728, 0.2269333
...: , 0.6589312,0.70067763, 0.8960621 ],[ 0., 15., 0.4
...: 4955394, 0.5509065, 0.4315516,0.6530549, 0.7223625 ]]])
In [450]: preds0.shape
Out[450]: (1, 2, 7)
argsort
应用于那个是相同形状的数组:
In [451]: np.argsort(preds0)
Out[451]:
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
In [452]: _.shape
Out[452]: (1, 2, 7)
对于大小为 1 的初始维度,该维度上的反转或切片量不会产生影响。我怀疑你想反转并切片最后一个维度,大小为 7 的维度。但是,要小心。多维数组的 argsort,即使应用于一维(默认的最后一个)也是一件很难理解和使用的事情。
形状与数组匹配,但取值范围为0-6,即最后一维。 numpy 1.15 添加了几个函数,以便更容易地使用 argsort
(和其他一些函数)的结果:
In [455]: np.take_along_axis(preds0, Out[451], axis=-1)
Out[455]:
array([[[ 0. , 0.2269333 , 0.3361728 , 0.6589312 ,
0.70067763, 0.8960621 , 7. ],
[ 0. , 0.4315516 , 0.44955394, 0.5509065 ,
0.6530549 , 0.7223625 , 15. ]]])
请注意,行现在已排序,与 np.sort(preds0, axis=-1)
生成的相同。
我可以选择一个 'row' 索引数组:
In [459]: idxs = Out[451]
In [461]: idx = idxs[0,0]
In [462]: idx
Out[462]: array([0, 3, 2, 4, 5, 6, 1])
In [463]: idx[::-1] # reverse
Out[463]: array([1, 6, 5, 4, 2, 3, 0])
In [464]: idx[::-1][:5] # select
Out[464]: array([1, 6, 5, 4, 2])
In [465]: preds0[0,0,Out[464]]
Out[465]: array([7. , 0.8960621 , 0.70067763, 0.6589312 , 0.3361728 ])
现在我有 preds0[0,0,:]
的五个最大值,倒序排列。
并对整个 preds0
数组执行此操作:
np.take_along_axis(preds0, idxs[:,:,::-1][:,:,:5], axis=-1)
或早期版本:
preds0[[0], [[0],[1]], idxs[:,:,::-1][:,:,:5]]
我是一个 Python 新手,在 for 循环中使用多维数组有点吃力。我有的是:
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
...
...
idxs = np.argsort(preds[0])[::-1][:5]
print(idxs)
#loop over top 5 predictions & display them
for (i, idx) in enumerate(idxs):
# draw the top prediction on the input image
print (idx)
if i == 0:
print (preds)
text = "Label: {}, {:.2f}%".format(CLASSES[idx], preds[0][idx] * 100)
cv2.putText(frame, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)
# display the predicted label + associated probability to the
# console
print("[INFO] {}. label: {}, probability: {:.5}".format(i + 1,CLASSES[idx], preds[0][idx]))
我得到类似的东西:
[[[ 0. 7. 0.3361728 0.2269333 0.6589312
0.70067763 0.8960621 ]
[ 0. 15. 0.44955394 0.5509065 0.4315516
0.6530549 0.7223625 ]]]
[[[0 3 2 4 5 6 1]
[0 4 2 3 5 6 1]]]
[[0 3 2 4 5 6 1]
[0 4 2 3 5 6 1]]
[[[[ 0. 7. 0.3361728 0.2269333 0.6589312
0.70067763 0.8960621 ]
[ 0. 15. 0.44955394 0.5509065 0.4315516
0.6530549 0.7223625 ]]]]
Traceback (most recent call last):
File "real_time_object_detection.py", line 80, in <module>
text = "Label: {}, {:.2f}%".format(CLASSES[idx], preds[0][idx] * 100)
TypeError: only integer scalar arrays can be converted to a scalar index
我从 https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/ 复制了这段代码,但看起来我做错了什么,因为 idx
应该是一个 int
而不是一个数组
更新:
我试图弄清楚这里发生了什么,但我遇到了以下问题:为什么所有 argsort 调用都给出相同的结果? :o
>>> preds[0] = [[[ 0., 7., 0.3361728, 0.2269333, 0.6589312,0.70067763, 0.8960621 ],[ 0., 15., 0.44955394, 0.5509065, 0.4315516,0.6530549, 0.7223625 ]]]
>>> print(preds[0])
[[[0.0, 7.0, 0.3361728, 0.2269333, 0.6589312, 0.70067763, 0.8960621], [0.0, 15.0, 0.44955394, 0.5509065, 0.4315516, 0.6530549, 0.7223625]]]
>>> import numpy as np
>>> np.argsort(preds[0])
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
>>> np.argsort(preds[0])[::-1]
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
>>> np.argsort(preds[0])[::-1][:5]
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
另外为什么它似乎改变了数据,它不应该只是排序吗?
你的preds[0]
,赋值给变量名的是一个3d数组:
In [449]: preds0 = np.array([[[ 0., 7., 0.3361728, 0.2269333
...: , 0.6589312,0.70067763, 0.8960621 ],[ 0., 15., 0.4
...: 4955394, 0.5509065, 0.4315516,0.6530549, 0.7223625 ]]])
In [450]: preds0.shape
Out[450]: (1, 2, 7)
argsort
应用于那个是相同形状的数组:
In [451]: np.argsort(preds0)
Out[451]:
array([[[0, 3, 2, 4, 5, 6, 1],
[0, 4, 2, 3, 5, 6, 1]]])
In [452]: _.shape
Out[452]: (1, 2, 7)
对于大小为 1 的初始维度,该维度上的反转或切片量不会产生影响。我怀疑你想反转并切片最后一个维度,大小为 7 的维度。但是,要小心。多维数组的 argsort,即使应用于一维(默认的最后一个)也是一件很难理解和使用的事情。
形状与数组匹配,但取值范围为0-6,即最后一维。 numpy 1.15 添加了几个函数,以便更容易地使用 argsort
(和其他一些函数)的结果:
In [455]: np.take_along_axis(preds0, Out[451], axis=-1)
Out[455]:
array([[[ 0. , 0.2269333 , 0.3361728 , 0.6589312 ,
0.70067763, 0.8960621 , 7. ],
[ 0. , 0.4315516 , 0.44955394, 0.5509065 ,
0.6530549 , 0.7223625 , 15. ]]])
请注意,行现在已排序,与 np.sort(preds0, axis=-1)
生成的相同。
我可以选择一个 'row' 索引数组:
In [459]: idxs = Out[451]
In [461]: idx = idxs[0,0]
In [462]: idx
Out[462]: array([0, 3, 2, 4, 5, 6, 1])
In [463]: idx[::-1] # reverse
Out[463]: array([1, 6, 5, 4, 2, 3, 0])
In [464]: idx[::-1][:5] # select
Out[464]: array([1, 6, 5, 4, 2])
In [465]: preds0[0,0,Out[464]]
Out[465]: array([7. , 0.8960621 , 0.70067763, 0.6589312 , 0.3361728 ])
现在我有 preds0[0,0,:]
的五个最大值,倒序排列。
并对整个 preds0
数组执行此操作:
np.take_along_axis(preds0, idxs[:,:,::-1][:,:,:5], axis=-1)
或早期版本:
preds0[[0], [[0],[1]], idxs[:,:,::-1][:,:,:5]]