如何从 python 中的 pandas 数据框中的列中提取关键字(字符串)
How to extract a keyword(string) from a column in pandas dataframe in python
我有一个数据框 df
,它看起来像这样:
id Type agent_id created_at
0 44525 Stunning 6 bedroom villa in New Delhi 184 2018-03-09
1 44859 Villa for sale in Amritsar 182 2017-02-19
2 45465 House in Faridabad 154 2017-04-17
3 50685 5 Hectre land near New Delhi 113 2017-09-01
4 130728 Duplex in Mumbai 157 2017-02-07
5 130856 Large plot with fantastic views in Mumbai 137 2018-01-16
6 130857 Modern Design Penthouse in Bangalore 199 2017-03-24
我有这个表格数据,我正在尝试通过从列中提取关键字来清理这些数据,从而创建一个包含新列的新数据框。
Apartment = ['apartment', 'penthouse', 'duplex']
House = ['house', 'villa', 'country estate']
Plot = ['plot', 'land']
Location = ['New Delhi','Mumbai','Bangalore','Amritsar']
因此,所需的数据框应如下所示:
id Type Location agent_id created_at
0 44525 House New Delhi 184 2018-03-09
1 44859 House Amritsar 182 2017-02-19
2 45465 House Faridabad 154 2017-04-17
3 50685 Plot New Delhi 113 2017-09-01
4 130728 Apartment Mumbai 157 2017-02-07
5 130856 Plot Mumbai 137 2018-01-16
6 130857 Apartment Bangalore 199 2017-03-24
所以到目前为止我已经试过了:
import pandas as pd
df = pd.read_csv('test_data.csv')
#i can extract these keywords one by one by using for loops but how
#can i do this work in pandas with minimum possible line of code.
for index, values in df.type.iteritems():
for i in Apartment:
if i in values:
print(i)
df_new = pd. Dataframe(df['id'])
谁能告诉我如何解决这个问题?
首先通过 str.extract
创建 Location
列,使用 |
用于正则表达式 OR
:
pat = '|'.join(r"\b{}\b".format(x) for x in Location)
df['Location'] = df['Type'].str.extract('('+ pat + ')', expand=False)
然后从另一个 list
s 创建字典,将键与值交换并在循环中通过掩码设置值 str.contains
和参数 case=False
:
d = {'Apartment' : Apartment,
'House' : House,
'Plot' : Plot}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
for k, v in d1.items():
df.loc[df['Type'].str.contains(k, case=False), 'Type'] = v
print (df)
id Type agent_id created_at Location
0 44525 House 184 2018-03-09 New Delhi
1 44859 House 182 2017-02-19 Amritsar
2 45465 House 154 2017-04-17 NaN
3 50685 Plot 113 2017-09-01 New Delhi
4 130728 Apartment 157 2017-02-07 Mumbai
5 130856 Plot 137 2018-01-16 Mumbai
6 130857 Apartment 199 2017-03-24 Bangalore
106 如果是 isna(key).any():
--> 107 引发 ValueError('cannot index with vector containing '
108'NA / NaN values')
109return错误
ValueError:无法使用包含 NA / NaN 值的向量进行索引
我遇到了以上错误
我有一个数据框 df
,它看起来像这样:
id Type agent_id created_at
0 44525 Stunning 6 bedroom villa in New Delhi 184 2018-03-09
1 44859 Villa for sale in Amritsar 182 2017-02-19
2 45465 House in Faridabad 154 2017-04-17
3 50685 5 Hectre land near New Delhi 113 2017-09-01
4 130728 Duplex in Mumbai 157 2017-02-07
5 130856 Large plot with fantastic views in Mumbai 137 2018-01-16
6 130857 Modern Design Penthouse in Bangalore 199 2017-03-24
我有这个表格数据,我正在尝试通过从列中提取关键字来清理这些数据,从而创建一个包含新列的新数据框。
Apartment = ['apartment', 'penthouse', 'duplex']
House = ['house', 'villa', 'country estate']
Plot = ['plot', 'land']
Location = ['New Delhi','Mumbai','Bangalore','Amritsar']
因此,所需的数据框应如下所示:
id Type Location agent_id created_at
0 44525 House New Delhi 184 2018-03-09
1 44859 House Amritsar 182 2017-02-19
2 45465 House Faridabad 154 2017-04-17
3 50685 Plot New Delhi 113 2017-09-01
4 130728 Apartment Mumbai 157 2017-02-07
5 130856 Plot Mumbai 137 2018-01-16
6 130857 Apartment Bangalore 199 2017-03-24
所以到目前为止我已经试过了:
import pandas as pd
df = pd.read_csv('test_data.csv')
#i can extract these keywords one by one by using for loops but how
#can i do this work in pandas with minimum possible line of code.
for index, values in df.type.iteritems():
for i in Apartment:
if i in values:
print(i)
df_new = pd. Dataframe(df['id'])
谁能告诉我如何解决这个问题?
首先通过 str.extract
创建 Location
列,使用 |
用于正则表达式 OR
:
pat = '|'.join(r"\b{}\b".format(x) for x in Location)
df['Location'] = df['Type'].str.extract('('+ pat + ')', expand=False)
然后从另一个 list
s 创建字典,将键与值交换并在循环中通过掩码设置值 str.contains
和参数 case=False
:
d = {'Apartment' : Apartment,
'House' : House,
'Plot' : Plot}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
for k, v in d1.items():
df.loc[df['Type'].str.contains(k, case=False), 'Type'] = v
print (df)
id Type agent_id created_at Location
0 44525 House 184 2018-03-09 New Delhi
1 44859 House 182 2017-02-19 Amritsar
2 45465 House 154 2017-04-17 NaN
3 50685 Plot 113 2017-09-01 New Delhi
4 130728 Apartment 157 2017-02-07 Mumbai
5 130856 Plot 137 2018-01-16 Mumbai
6 130857 Apartment 199 2017-03-24 Bangalore
106 如果是 isna(key).any(): --> 107 引发 ValueError('cannot index with vector containing ' 108'NA / NaN values') 109return错误
ValueError:无法使用包含 NA / NaN 值的向量进行索引
我遇到了以上错误