根据其他列的条件在 Pyspark 数据框中添加新列

Add new column in Pyspark dataframe based on where condition on other column

我有一个 Pyspark 数据框如下:

+------------+-------------+--------------------+
|package_id  | location    | package_scan_code  | 
+------------+-------------+--------------------+
|123         | Denver      |05                  |  
|123         | LosAngeles  |03                  |  
|123         | Dallas      |09                  |  
|123         | Vail        |02                  | 
|456         | Jacksonville|05                  |  
|456         | Nashville   |09                  |
|456         | Memphis     |03                  |

"package_scan_code" 03代表包的产地。

我想向此数据框添加一列 "origin",这样对于每个包(由 "package_id" 标识),新添加的原始列中的值将与对应的位置相同"package_scan_code"03.

在上面的案例中,有两个独特的包裹123和456,它们的起源分别是洛杉矶和孟菲斯(对应package_scan_code 03)。

所以我希望输出如下:

+------------+-------------+--------------------+------------+
| package_id |location     | package_scan_code  |origin      |
+------------+-------------+--------------------+------------+
|123         | Denver      |05                  | LosAngeles |
|123         | LosAngeles  |03                  | LosAngeles |
|123         | Dallas      |09                  | LosAngeles |
|123         | Vail        |02                  | LosAngeles |
|456         | Jacksonville|05                  |  Memphis   |
|456         | Nashville   |09                  |  Memphis   |
|456         | Memphis     |03                  |  Memphis   |

我如何在 Pyspark 中实现这一点?我尝试了 .withColumn 方法,但我无法获得正确的条件。

package_scan_code == '03'过滤数据框,然后与原始数据框连接:

(df.filter(df.package_scan_code == '03')
   .selectExpr('package_id', 'location as origin')
   .join(df, ['package_id'], how='right')
   .show())
+----------+----------+------------+-----------------+
|package_id|    origin|    location|package_scan_code|
+----------+----------+------------+-----------------+
|       123|LosAngeles|      Denver|               05|
|       123|LosAngeles|  LosAngeles|               03|
|       123|LosAngeles|      Dallas|               09|
|       123|LosAngeles|        Vail|               02|
|       456|   Memphis|Jacksonville|               05|
|       456|   Memphis|   Nashville|               09|
|       456|   Memphis|     Memphis|               03|
+----------+----------+------------+-----------------+

注意:这里假设每个 package_id 最多有一个 package_scan_code 等于 03,否则逻辑不正确,您需要重新考虑 [=15] =] 应该被定义。

无论数据帧中每个 package_id 出现多少次 package_scan_code=03,此代码都应该有效。我又添加了一个 (123,'LosAngeles','03') 来证明 -

步骤 1: 创建 DataFrame

values = [(123,'Denver','05'),(123,'LosAngeles','03'),(123,'Dallas','09'),(123,'Vail','02'),(123,'LosAngeles','03'),
          (456,'Jacksonville','05'),(456,'Nashville','09'),(456,'Memphis','03')]
df = sqlContext.createDataFrame(values,['package_id','location','package_scan_code'])

步骤 2: 创建 package_idlocation 的字典。

df_count = df.where(col('package_scan_code')=='03').groupby('package_id','location').count()
dict_location_scan_code = dict(df_count.rdd.map(lambda x: (x['package_id'], x['location'])).collect())
print(dict_location_scan_code)
    {456: 'Memphis', 123: 'LosAngeles'}

第 3 步: 创建列,映射字典。

from pyspark.sql.functions import col, create_map, lit
from itertools import chain
mapping_expr = create_map([lit(x) for x in chain(*dict_location_scan_code.items())])
df = df.withColumn('origin', mapping_expr.getItem(col('package_id')))
df.show()
+----------+------------+-----------------+----------+
|package_id|    location|package_scan_code|    origin|
+----------+------------+-----------------+----------+
|       123|      Denver|               05|LosAngeles|
|       123|  LosAngeles|               03|LosAngeles|
|       123|      Dallas|               09|LosAngeles|
|       123|        Vail|               02|LosAngeles|
|       123|  LosAngeles|               03|LosAngeles|
|       456|Jacksonville|               05|   Memphis|
|       456|   Nashville|               09|   Memphis|
|       456|     Memphis|               03|   Memphis|
+----------+------------+-----------------+----------+