合并 R 中的重叠间隔

Merge overlapping intervals in R

我正在尝试合并重叠间隔以计算唯一间隔的总和,同时删除排除的间隔。

这是一个最小的工作示例:

mydata <- data.frame(interval = c(1,2,3,4,5,6,7,8,9,10),
                     timeoutStart = c(280,500,NA,NA,NA,NA,NA,NA,NA,NA),
                     timeoutEnd = c(310,530,NA,NA,NA,NA,NA,NA,NA,NA),
                     cheeringStart = c(1,181,205,330,460,740,NA,NA,NA,NA),
                     cheeringEnd = c(120,199,300,420,475,760,NA,NA,NA,NA),
                     possessionStart = c(80,180,210,250,350,450,550,650,750,800),
                     possessionEnd = c(130,200,220,280,400,499,600,700,800,950)
)

interval timeoutStart timeoutEnd cheeringStart cheeringEnd possessionStart possessionEnd
       1          280        310             1         120              80           130
       2          500        530           181         199             180           200
       3           NA         NA           205         300             210           220
       4           NA         NA           330         420             250           280
       5           NA         NA           460         475             350           400
       6           NA         NA           740         760             450           499
       7           NA         NA            NA          NA             550           600
       8           NA         NA            NA          NA             650           700
       9           NA         NA            NA          NA             750           800
      10           NA         NA            NA          NA             800           950

在上面的最小工作示例中,我想计算球队花在欢呼或控球上的总时间(不包括暂停)。矩阵中的值表示每个结果(timeoutcheeringpossession)的不同间隔的开始和结束时间(自游戏开始后经过的秒数)。结果不是相互排斥的,可以同时发生。但是,我不想“重复计算”cheeringpossession 的重叠间隔。也就是说,我想合并 cheeringpossession 的重叠区间,所以我可以对“唯一”区间求和。

例如,一次欢呼间隔发生在 740 到 760 秒之间,而一次控球间隔与该间隔重叠(750 到 800 秒)。合并间隔为 740 到 800 秒(持续时间 = 60 秒)。

合并 cheeringpossession 的重叠间隔后,我想排除超时间隔。例如,对于从 205 到 300 秒的唯一间隔,我想排除从 280 到 310 秒的超时间隔。因此,不包括超时间隔的唯一间隔为 205 到 280 秒(持续时间 = 75 秒)。

我想计算每个唯一间隔的持续时间 (EndStart) 不包括超时间隔,然后计算所有这些唯一间隔持续时间的总和(不包括超时间隔).最后,我希望能够根据该行中另一个变量(keep = 0 或 1)的值在计算中包含或排除间隔。

假设 StartEnd 时间列没有预先排序。我还希望该方法具有通用性,以便能够轻松添加多个附加列集以包含在总和中(例如,运球、传球等)。我查看了其他答案,但没有找到一种方法将他们的解决方案推广到我的情况。

这里是使用 data.tablefoverlaps() 执行重叠连接的解决方案。 这只是部分解决方案......提供所需的输出会有所帮助。但是您可以在此代码的基础上构建您想要的任何东西..

假设您的数据被命名为 df

library( data.table )

#create data.tables for cheers and possession
cheers.dt <- data.table( interval.cheer = df$interval, 
                     start.cheer = df$cheeringStart, 
                     end.cheer = df$cheeringEnd )[!is.na(start.cheer),]
possession.dt <- data.table( interval.pos = df$interval, 
                             start.pos = df$possessionStart, 
                             end.pos = df$possessionEnd )
#set keys
setkey( cheers.dt, start.cheer, end.cheer )
#perform overlap-join
foverlaps( possession.dt, 
           cheers.dt, 
           by.x = c( "start.pos", "end.pos" ), 
           type = "any", 
           mult = "all", 
           nomatch = NULL )

#    interval.cheer start.cheer end.cheer interval.pos start.pos end.pos
# 1:              1           1       120            1        80     130
# 2:              2         181       199            2       180     200
# 3:              3         205       300            3       210     220
# 4:              3         205       300            4       250     280
# 5:              4         330       420            5       350     400
# 6:              5         460       475            6       450     499
# 7:              6         740       760            9       750     800

我建议您阅读有关 data.tablefoverlaps() 函数和非等值连接的内容。

这个怎么样?

mydata <- data.frame(interval = c(1,2,3,4,5,6,7,8,9,10),
                     timeoutStart = c(280,500,NA,NA,NA,NA,NA,NA,NA,NA),
                     timeoutEnd = c(310,530,NA,NA,NA,NA,NA,NA,NA,NA),
                     cheeringStart = c(1,181,205,330,460,740,NA,NA,NA,NA),
                     cheeringEnd = c(120,199,300,420,475,760,NA,NA,NA,NA),
                     possessionStart = c(80,180,210,250,350,450,550,650,750,800),
                     possessionEnd = c(130,200,220,280,400,499,600,700,800,950),
                     keep = c(rep(FALSE, 2), rep(TRUE, 8)) #added for illustration
)

#add whatever columns you want to use to calculate the merged interval
#they must be in the same order in both vectors
#e.g. if 'cheeringStart' is at index 1, so must 'cheeringEnd'
intervalStartCols <- c('cheeringStart', 'possessionStart')
intervalEndCols <- c('cheeringEnd', 'possessionEnd')
intervalCols <- c(intervalStartCols, intervalEndCols)
timeoutCols <- c('timeoutStart', 'timeoutEnd')

mydata$mergedDuration <- apply(mydata, MARGIN = 1, FUN = function(row){

  #return zero if all NAs
  if(all(is.na(row[intervalCols]))) return(0)

  if(!all(is.na(row[timeoutCols]))){
    timeout.start <- row['timeoutStart']
    timeout.end <- row['timeoutEnd']
  } else {
    timeout.end <- 0
  }

  #identify the maximum time (this will be the end of the merged interval)
  max.end <- max(row[intervalEndCols], na.rm=TRUE)

  #set intial values
  duration <- 0
  segment.complete <- FALSE
  start.i <- which(row[intervalStartCols] == min(row[intervalStartCols], na.rm=TRUE))
  next.step <- row[intervalStartCols][start.i]

  waypoints <- row[intervalCols]
  waypoints <- waypoints[!is.na(waypoints)]
  waypoints <- waypoints[waypoints!=next.step]

  #calculate interval duration adjusting for overlap
  while(next.step < max.end){

    start <- row[intervalStartCols][start.i]

    next.step <- waypoints[waypoints == min(waypoints[waypoints!=next.step])]
    if(segment.complete){
      start.i <- which(row[intervalStartCols] == next.step)
      segment.complete <- FALSE
    }
    end.i <- which(row[intervalEndCols] == next.step)

    waypoints <- waypoints[waypoints!=next.step]

    if(length(end.i) > 0 && length(start.i) >0 && end.i == start.i) {

      segment.start <- row[intervalStartCols][start.i]
      segment.end <- row[intervalEndCols][end.i]
      segment.duration <- segment.end - segment.start

      #adjust for timeout
      timeout.adj <- {
        if (timeout.end == 0) 0 #this is the NA case
        else if(timeout.start > segment.end | timeout.end < segment.start) 0
        else if(timeout.end > segment.end & timeout.start < segment.start) segment.duration
        else if(timeout.end < segment.end) timeout.end - segment.start
        else segment.end - timeout.start
      }

      duration <- duration + segment.duration - timeout.adj
      segment.complete <- TRUE
    }

  }

  duration
})

#sum duration using 'keep' column as mask
summed.duration <- sum(mydata[mydata$keep, 'mergedDuration'])
print(summed.duration)