在 PySpark 中使用 'window' 函数按天分组的问题

Problem using 'window' function to group by day in PySpark

我有一个数据集需要重新采样。为此,我需要按天对其进行分组,同时计算每个传感器的中值。我正在使用 window 函数,但它只返回一个样本。

这是数据集:

+--------+-------------+-------------------+------+------------------+
|Variable|  Sensor Name|          Timestamp| Units|             Value|
+--------+-------------+-------------------+------+------------------+
|     NO2|aq_monitor914|2018-10-07 23:15:00|ugm -3|0.9945200000000001|
|     NO2|aq_monitor914|2018-10-07 23:30:00|ugm -3|1.1449200000000002|
|     NO2|aq_monitor914|2018-10-07 23:45:00|ugm -3|           1.13176|
|     NO2|aq_monitor914|2018-10-08 00:00:00|ugm -3|            0.9212|
|     NO2|aq_monitor914|2018-10-08 00:15:00|ugm -3|           1.39872|
|     NO2|aq_monitor914|2018-10-08 00:30:00|ugm -3|           1.51528|
|     NO2|aq_monitor914|2018-10-08 00:45:00|ugm -3|           1.61116|
|     NO2|aq_monitor914|2018-10-08 01:00:00|ugm -3|           1.59612|
|     NO2|aq_monitor914|2018-10-08 01:15:00|ugm -3|           1.12612|
|     NO2|aq_monitor914|2018-10-08 01:30:00|ugm -3|           1.04528|
+--------+-------------+-------------------+------+------------------+

我需要按天重新采样,计算每一天 "Value" 列的中位数。我正在使用以下代码来执行此操作:

magic_percentile = psf.expr('percentile_approx(Value, 0.5)') #Calculates median of the 'Value' column 

data = data.groupby('Variable','Sensor Name',window('Timestamp', "1 day")).agg(magic_percentile.alias('Value')

但是,问题来了,这只返回了以下 DataFrame:

+--------+-------------+--------------------+-------+
|Variable|  Sensor Name|              window|  Value|
+--------+-------------+--------------------+-------+
|     NO2|aq_monitor914|[2018-10-07 21:00...|1.13176|
+--------+-------------+--------------------+-------+

详述 'window' 列:

window=Row(start=datetime.datetime(2018, 10, 7, 21, 0), end=datetime.datetime(2018, 10, 8, 21, 0))

以我对window的理解,应该把当前时间戳做成一天window,例如: 2018-10-07 23:15:00 应该变成: 2018-10-07 并按变量、传感器名称和当天对传感器进行分组,然后计算它的中位数。我真的很困惑该怎么做。

我相信你不需要使用Window来实现你想要的。例如,如果你想对每个给定日期之前的天数进行一些汇总,你将需要它。在您的示例中,您只需解析 datetime 列并在 groupBy 语句中使用它就足够了。下面给出了一个工作示例,希望对您有所帮助!

import pyspark.sql.functions as psf

df = sqlContext.createDataFrame(
    [
     ('NO2','aq_monitor914','2018-10-07 23:15:00',0.9945200000000001),
     ('NO2','aq_monitor914','2018-10-07 23:30:00',1.1449200000000002),
     ('NO2','aq_monitor914','2018-10-07 23:45:00',1.13176),
     ('NO2','aq_monitor914','2018-10-08 00:00:00',0.9212),
     ('NO2','aq_monitor914','2018-10-08 00:15:00',1.39872),
     ('NO2','aq_monitor914','2018-10-08 00:30:00',1.51528)
    ],
    ("Variable","Sensor Name","Timestamp","Value")
)
df = df.withColumn('Timestamp',psf.to_timestamp("Timestamp", "yyyy-MM-dd HH:mm:ss"))
df.show()

magic_percentile = psf.expr('percentile_approx(Value, 0.5)')
df_agg = df.groupBy('Variable','Sensor Name',psf.to_date('Timestamp').alias('Day')).agg(magic_percentile.alias('Value'))
df_agg.show()

输入:

+--------+-------------+-------------------+------------------+
|Variable|  Sensor Name|          Timestamp|             Value|
+--------+-------------+-------------------+------------------+
|     NO2|aq_monitor914|2018-10-07 23:15:00|0.9945200000000001|
|     NO2|aq_monitor914|2018-10-07 23:30:00|1.1449200000000002|
|     NO2|aq_monitor914|2018-10-07 23:45:00|           1.13176|
|     NO2|aq_monitor914|2018-10-08 00:00:00|            0.9212|
|     NO2|aq_monitor914|2018-10-08 00:15:00|           1.39872|
|     NO2|aq_monitor914|2018-10-08 00:30:00|           1.51528|
+--------+-------------+-------------------+------------------+

输出:

+--------+-------------+----------+-------+
|Variable|  Sensor Name|       Day|  Value|
+--------+-------------+----------+-------+
|     NO2|aq_monitor914|2018-10-07|1.13176|
|     NO2|aq_monitor914|2018-10-08|1.39872|
+--------+-------------+----------+-------+