通过时间戳 scala 更新数据帧值
update dataframe value by timestamp scala
我有这个数据框
+----------------+-----------------------------+--------------------+--------------+----------------+
|customerid| | event | A | B | C |
+----------------+-----------------------------+--------------------+--------------+----------------+
| 1222222 | 2019-02-07 06:50:40.0 |aaaaaa | 25 | 5025 |
| 1222222 | 2019-02-07 06:50:42.0 |aaaaaa | 35 | 5000 |
| 1222222 | 2019-02-07 06:51:56.0 |aaaaaa | 100 | 4965 |
+----------------+-----------------------------+--------------------+--------------+----------------+
我想通过事件 (tiemstamp) 更新 C 列的值,并且只保留具有最新值更新的行,就像这样
+----------------+-----------------------------+--------------------+--------------+----------------+
|customerid| | event | A | B | C |
+----------------+-----------------------------+--------------------+--------------+----------------+
| 1222222 | 2019-02-07 06:51:56.0 |aaaaaa | 100 | 4965 |
+----------------+-----------------------------+--------------------+--------------+----------------+
数据通过 Spark Streaming 进入流模式
您可以尝试创建按 customerid 分区并按事件 desc 排序的行号,并获取 rownum 为 1 的行。希望这对您有所帮助。
df.withColumn("rownum", row_number().over(Window.partitionBy("customerid").orderBy(col("event").desc)))
.filter(col("rownum") === 1)
.drop("rownum")
我有这个数据框
+----------------+-----------------------------+--------------------+--------------+----------------+
|customerid| | event | A | B | C |
+----------------+-----------------------------+--------------------+--------------+----------------+
| 1222222 | 2019-02-07 06:50:40.0 |aaaaaa | 25 | 5025 |
| 1222222 | 2019-02-07 06:50:42.0 |aaaaaa | 35 | 5000 |
| 1222222 | 2019-02-07 06:51:56.0 |aaaaaa | 100 | 4965 |
+----------------+-----------------------------+--------------------+--------------+----------------+
我想通过事件 (tiemstamp) 更新 C 列的值,并且只保留具有最新值更新的行,就像这样
+----------------+-----------------------------+--------------------+--------------+----------------+
|customerid| | event | A | B | C |
+----------------+-----------------------------+--------------------+--------------+----------------+
| 1222222 | 2019-02-07 06:51:56.0 |aaaaaa | 100 | 4965 |
+----------------+-----------------------------+--------------------+--------------+----------------+
数据通过 Spark Streaming 进入流模式
您可以尝试创建按 customerid 分区并按事件 desc 排序的行号,并获取 rownum 为 1 的行。希望这对您有所帮助。
df.withColumn("rownum", row_number().over(Window.partitionBy("customerid").orderBy(col("event").desc)))
.filter(col("rownum") === 1)
.drop("rownum")