为什么 numpy.round 不会舍入我的数组?
Why will numpy.round will not round my array?
我正在尝试对由 Keras 模型预测结果输出的 numpy 数组进行舍入。但是执行numpy.round/numpy.around后,没有任何变化。
这里的最终目标是让数组在 below/equal 0.50 时向下舍入为 0,或者在高于 0.50 时向上舍入。
代码在这里:
from keras.models import load_model
import numpy
model = load_model('tried.h5')
data = numpy.loadtxt("AppData\Roaming\MetaQuotes\TerminalDDB309C90B408373EFC53AC730F336\MQL4\Files\indicatorout.csv", delimiter=",")
data = numpy.array([data])
print(data)
outdata = model.predict(data)
print(outdata)
numpy.around(outdata, 0)
print(outdata)
numpy.savetxt("AppData\Roaming\MetaQuotes\TerminalDDB309C90B408373EFC53AC730F336\MQL4\Files\modelout.txt", outdata)
日志也在这里:
Using TensorFlow backend.
[[1.19539070e+01 1.72686310e+01 2.24426384e+01 1.82771435e+01
2.23788052e+01 1.62105408e+01 1.44595184e+01 1.90179043e+01
1.71749554e+01 1.69194088e+01 1.89911938e+01 1.76701393e+01
5.19613740e-01 5.38522415e+01 9.64037247e+01 1.73570000e-04
4.35710000e-04 9.55710000e-04]]
[[0.4215713]]
[[0.4215713]]
任何帮助将不胜感激,谢谢。
我假设您希望数组中的元素四舍五入到 n
位小数。下面是这样做的说明:
# sample array to work with
In [21]: arr = np.random.randn(4)
In [22]: arr
Out[22]: array([-0.94817409, -1.61453252, 0.16566428, -0.53507549])
# round to 3 decimal places; note that `arr` is still unaffected.
In [23]: arr.round(decimals=3)
Out[23]: array([-0.948, -1.615, 0.166, -0.535])
# if you want to round it to nearest integer
In [24]: arr_rint = np.rint(arr)
In [25]: arr_rint
Out[25]: array([-1., -2., 0., -1.])
要使小数舍入就地工作,请指定 out=
参数,如下所示:
In [26]: arr.round(decimals=3, out=arr)
Out[26]: array([-0.948, -1.615, 0.166, -0.535])
我正在尝试对由 Keras 模型预测结果输出的 numpy 数组进行舍入。但是执行numpy.round/numpy.around后,没有任何变化。
这里的最终目标是让数组在 below/equal 0.50 时向下舍入为 0,或者在高于 0.50 时向上舍入。
代码在这里:
from keras.models import load_model
import numpy
model = load_model('tried.h5')
data = numpy.loadtxt("AppData\Roaming\MetaQuotes\TerminalDDB309C90B408373EFC53AC730F336\MQL4\Files\indicatorout.csv", delimiter=",")
data = numpy.array([data])
print(data)
outdata = model.predict(data)
print(outdata)
numpy.around(outdata, 0)
print(outdata)
numpy.savetxt("AppData\Roaming\MetaQuotes\TerminalDDB309C90B408373EFC53AC730F336\MQL4\Files\modelout.txt", outdata)
日志也在这里:
Using TensorFlow backend.
[[1.19539070e+01 1.72686310e+01 2.24426384e+01 1.82771435e+01
2.23788052e+01 1.62105408e+01 1.44595184e+01 1.90179043e+01
1.71749554e+01 1.69194088e+01 1.89911938e+01 1.76701393e+01
5.19613740e-01 5.38522415e+01 9.64037247e+01 1.73570000e-04
4.35710000e-04 9.55710000e-04]]
[[0.4215713]]
[[0.4215713]]
任何帮助将不胜感激,谢谢。
我假设您希望数组中的元素四舍五入到 n
位小数。下面是这样做的说明:
# sample array to work with
In [21]: arr = np.random.randn(4)
In [22]: arr
Out[22]: array([-0.94817409, -1.61453252, 0.16566428, -0.53507549])
# round to 3 decimal places; note that `arr` is still unaffected.
In [23]: arr.round(decimals=3)
Out[23]: array([-0.948, -1.615, 0.166, -0.535])
# if you want to round it to nearest integer
In [24]: arr_rint = np.rint(arr)
In [25]: arr_rint
Out[25]: array([-1., -2., 0., -1.])
要使小数舍入就地工作,请指定 out=
参数,如下所示:
In [26]: arr.round(decimals=3, out=arr)
Out[26]: array([-0.948, -1.615, 0.166, -0.535])