Apache Flink 测试中是否有虚拟时间的概念,就像在 Reactor 和 RxJava 中一样
Is there a notion of virtual time in Apache Flink tests like there is in Reactor and RxJava
在 RxJava 和 Reactor 中,有虚拟时间的概念来测试依赖于时间的运算符。我不知道如何在 Flink 中执行此操作。例如,我将以下示例放在一起,我想在其中尝试处理迟到的事件以了解它们是如何处理的。但是我无法理解这样的测试会是什么样子?有没有办法结合 Flink 和 Reactor 让测试变得更好?
public class PlayWithFlink {
public static void main(String[] args) throws Exception {
final OutputTag<MyEvent> lateOutputTag = new OutputTag<MyEvent>("late-data"){};
// TODO understand how BoundedOutOfOrderness is related to allowedLateness
BoundedOutOfOrdernessTimestampExtractor<MyEvent> eventTimeFunction = new BoundedOutOfOrdernessTimestampExtractor<MyEvent>(Time.seconds(10)) {
@Override
public long extractTimestamp(MyEvent element) {
return element.getEventTime();
}
};
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<MyEvent> events = env.fromCollection(MyEvent.examples())
.assignTimestampsAndWatermarks(eventTimeFunction);
AggregateFunction<MyEvent, MyAggregate, MyAggregate> aggregateFn = new AggregateFunction<MyEvent, MyAggregate, MyAggregate>() {
@Override
public MyAggregate createAccumulator() {
return new MyAggregate();
}
@Override
public MyAggregate add(MyEvent myEvent, MyAggregate myAggregate) {
if (myEvent.getTracingId().equals("trace1")) {
myAggregate.getTrace1().add(myEvent);
return myAggregate;
}
myAggregate.getTrace2().add(myEvent);
return myAggregate;
}
@Override
public MyAggregate getResult(MyAggregate myAggregate) {
return myAggregate;
}
@Override
public MyAggregate merge(MyAggregate myAggregate, MyAggregate acc1) {
acc1.getTrace1().addAll(myAggregate.getTrace1());
acc1.getTrace2().addAll(myAggregate.getTrace2());
return acc1;
}
};
KeySelector<MyEvent, String> keyFn = new KeySelector<MyEvent, String>() {
@Override
public String getKey(MyEvent myEvent) throws Exception {
return myEvent.getTracingId();
}
};
SingleOutputStreamOperator<MyAggregate> result = events
.keyBy(keyFn)
.window(EventTimeSessionWindows.withGap(Time.seconds(10)))
.allowedLateness(Time.seconds(20))
.sideOutputLateData(lateOutputTag)
.aggregate(aggregateFn);
DataStream lateStream = result.getSideOutput(lateOutputTag);
result.print("SessionData");
lateStream.print("LateData");
env.execute();
}
}
class MyEvent {
private final String tracingId;
private final Integer count;
private final long eventTime;
public MyEvent(String tracingId, Integer count, long eventTime) {
this.tracingId = tracingId;
this.count = count;
this.eventTime = eventTime;
}
public String getTracingId() {
return tracingId;
}
public Integer getCount() {
return count;
}
public long getEventTime() {
return eventTime;
}
public static List<MyEvent> examples() {
long now = System.currentTimeMillis();
MyEvent e1 = new MyEvent("trace1", 1, now);
MyEvent e2 = new MyEvent("trace2", 1, now);
MyEvent e3 = new MyEvent("trace2", 1, now - 1000);
MyEvent e4 = new MyEvent("trace1", 1, now - 200);
MyEvent e5 = new MyEvent("trace1", 1, now - 50000);
return Arrays.asList(e1,e2,e3,e4, e5);
}
@Override
public String toString() {
return "MyEvent{" +
"tracingId='" + tracingId + '\'' +
", count=" + count +
", eventTime=" + eventTime +
'}';
}
}
class MyAggregate {
private final List<MyEvent> trace1 = new ArrayList<>();
private final List<MyEvent> trace2 = new ArrayList<>();
public List<MyEvent> getTrace1() {
return trace1;
}
public List<MyEvent> getTrace2() {
return trace2;
}
@Override
public String toString() {
return "MyAggregate{" +
"trace1=" + trace1 +
", trace2=" + trace2 +
'}';
}
}
运行 的输出是:
SessionData:1> MyAggregate{trace1=[], trace2=[MyEvent{tracingId='trace2', count=1, eventTime=1551034666081}, MyEvent{tracingId='trace2', count=1, eventTime=1551034665081}]}
SessionData:3> MyAggregate{trace1=[MyEvent{tracingId='trace1', count=1, eventTime=1551034166081}], trace2=[]}
SessionData:3> MyAggregate{trace1=[MyEvent{tracingId='trace1', count=1, eventTime=1551034666081}, MyEvent{tracingId='trace1', count=1, eventTime=1551034665881}], trace2=[]}
但是我希望看到 e5
事件的 lateStream 触发器应该在第一个事件触发之前 50 秒。
如果您将水印分配器修改成这样
AssignerWithPunctuatedWatermarks eventTimeFunction = new AssignerWithPunctuatedWatermarks<MyEvent>() {
long maxTs = 0;
@Override
public long extractTimestamp(MyEvent myEvent, long l) {
long ts = myEvent.getEventTime();
if (ts > maxTs) {
maxTs = ts;
}
return ts;
}
@Override
public Watermark checkAndGetNextWatermark(MyEvent event, long extractedTimestamp) {
return new Watermark(maxTs - 10000);
}
};
那么你会得到你期望的结果。我不推荐这个——只是用它来说明发生了什么。
这里发生的事情是 BoundedOutOfOrdernessTimestampExtractor
是一个周期性水印生成器,它只会每 200 毫秒(默认情况下)将水印插入到流中。因为您的作业在此之前很久就完成了,所以您的作业遇到的唯一水印是 Flink 在每个有限流的末尾注入的水印(值为 MAX_WATERMARK)。迟到是相对于水印而言的,你预计会迟到的事件却在水印之前到达。
通过切换到标点水印,您可以强制水印更频繁地出现,或者更精确地出现在流中的特定点。这通常是不必要的(而且过于频繁的水印会导致开销),但是当您想要对水印的顺序进行强有力的控制时会很有帮助。
至于怎么写测试,你可以看看 used in Flink's own tests, or at flink-spector。
更新:
与 BoundedOutOfOrdernessTimestampExtractor 关联的时间间隔是流的预期乱序程度的规范。在这个范围内到达的事件不被认为是迟到的,并且事件时间计时器在这个延迟结束之前不会触发,从而为乱序事件的到达留出时间。 allowedLateness 仅适用于 window API,并描述框架在正常 window 触发时间后保持 window 状态多长时间,以便事件仍可添加到 window 并导致延迟触发。在这个额外的时间间隔之后,window 状态被清除,后续事件被发送到侧输出(如果配置)。
所以当您使用 BoundedOutOfOrdernessTimestampExtractor<MyEvent>(Time.seconds(10))
时,您 而不是 说 "wait 10 seconds after every event in case earlier events might still arrive"。但是你是说你的事件最多应该有 10 秒的乱序。因此,如果您正在处理实时事件流,这意味着您将等待 最多 10 秒,以防更早的事件到达。 (而且,如果您正在处理历史数据,那么您可能能够在 1 秒内处理 10 秒的数据,也可能不会——知道您将等待 n 秒的事件时间过去并不能说明实际需要多长时间。 )
有关此主题的更多信息,请参阅 Event Time and Watermarks。
在 RxJava 和 Reactor 中,有虚拟时间的概念来测试依赖于时间的运算符。我不知道如何在 Flink 中执行此操作。例如,我将以下示例放在一起,我想在其中尝试处理迟到的事件以了解它们是如何处理的。但是我无法理解这样的测试会是什么样子?有没有办法结合 Flink 和 Reactor 让测试变得更好?
public class PlayWithFlink {
public static void main(String[] args) throws Exception {
final OutputTag<MyEvent> lateOutputTag = new OutputTag<MyEvent>("late-data"){};
// TODO understand how BoundedOutOfOrderness is related to allowedLateness
BoundedOutOfOrdernessTimestampExtractor<MyEvent> eventTimeFunction = new BoundedOutOfOrdernessTimestampExtractor<MyEvent>(Time.seconds(10)) {
@Override
public long extractTimestamp(MyEvent element) {
return element.getEventTime();
}
};
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<MyEvent> events = env.fromCollection(MyEvent.examples())
.assignTimestampsAndWatermarks(eventTimeFunction);
AggregateFunction<MyEvent, MyAggregate, MyAggregate> aggregateFn = new AggregateFunction<MyEvent, MyAggregate, MyAggregate>() {
@Override
public MyAggregate createAccumulator() {
return new MyAggregate();
}
@Override
public MyAggregate add(MyEvent myEvent, MyAggregate myAggregate) {
if (myEvent.getTracingId().equals("trace1")) {
myAggregate.getTrace1().add(myEvent);
return myAggregate;
}
myAggregate.getTrace2().add(myEvent);
return myAggregate;
}
@Override
public MyAggregate getResult(MyAggregate myAggregate) {
return myAggregate;
}
@Override
public MyAggregate merge(MyAggregate myAggregate, MyAggregate acc1) {
acc1.getTrace1().addAll(myAggregate.getTrace1());
acc1.getTrace2().addAll(myAggregate.getTrace2());
return acc1;
}
};
KeySelector<MyEvent, String> keyFn = new KeySelector<MyEvent, String>() {
@Override
public String getKey(MyEvent myEvent) throws Exception {
return myEvent.getTracingId();
}
};
SingleOutputStreamOperator<MyAggregate> result = events
.keyBy(keyFn)
.window(EventTimeSessionWindows.withGap(Time.seconds(10)))
.allowedLateness(Time.seconds(20))
.sideOutputLateData(lateOutputTag)
.aggregate(aggregateFn);
DataStream lateStream = result.getSideOutput(lateOutputTag);
result.print("SessionData");
lateStream.print("LateData");
env.execute();
}
}
class MyEvent {
private final String tracingId;
private final Integer count;
private final long eventTime;
public MyEvent(String tracingId, Integer count, long eventTime) {
this.tracingId = tracingId;
this.count = count;
this.eventTime = eventTime;
}
public String getTracingId() {
return tracingId;
}
public Integer getCount() {
return count;
}
public long getEventTime() {
return eventTime;
}
public static List<MyEvent> examples() {
long now = System.currentTimeMillis();
MyEvent e1 = new MyEvent("trace1", 1, now);
MyEvent e2 = new MyEvent("trace2", 1, now);
MyEvent e3 = new MyEvent("trace2", 1, now - 1000);
MyEvent e4 = new MyEvent("trace1", 1, now - 200);
MyEvent e5 = new MyEvent("trace1", 1, now - 50000);
return Arrays.asList(e1,e2,e3,e4, e5);
}
@Override
public String toString() {
return "MyEvent{" +
"tracingId='" + tracingId + '\'' +
", count=" + count +
", eventTime=" + eventTime +
'}';
}
}
class MyAggregate {
private final List<MyEvent> trace1 = new ArrayList<>();
private final List<MyEvent> trace2 = new ArrayList<>();
public List<MyEvent> getTrace1() {
return trace1;
}
public List<MyEvent> getTrace2() {
return trace2;
}
@Override
public String toString() {
return "MyAggregate{" +
"trace1=" + trace1 +
", trace2=" + trace2 +
'}';
}
}
运行 的输出是:
SessionData:1> MyAggregate{trace1=[], trace2=[MyEvent{tracingId='trace2', count=1, eventTime=1551034666081}, MyEvent{tracingId='trace2', count=1, eventTime=1551034665081}]}
SessionData:3> MyAggregate{trace1=[MyEvent{tracingId='trace1', count=1, eventTime=1551034166081}], trace2=[]}
SessionData:3> MyAggregate{trace1=[MyEvent{tracingId='trace1', count=1, eventTime=1551034666081}, MyEvent{tracingId='trace1', count=1, eventTime=1551034665881}], trace2=[]}
但是我希望看到 e5
事件的 lateStream 触发器应该在第一个事件触发之前 50 秒。
如果您将水印分配器修改成这样
AssignerWithPunctuatedWatermarks eventTimeFunction = new AssignerWithPunctuatedWatermarks<MyEvent>() {
long maxTs = 0;
@Override
public long extractTimestamp(MyEvent myEvent, long l) {
long ts = myEvent.getEventTime();
if (ts > maxTs) {
maxTs = ts;
}
return ts;
}
@Override
public Watermark checkAndGetNextWatermark(MyEvent event, long extractedTimestamp) {
return new Watermark(maxTs - 10000);
}
};
那么你会得到你期望的结果。我不推荐这个——只是用它来说明发生了什么。
这里发生的事情是 BoundedOutOfOrdernessTimestampExtractor
是一个周期性水印生成器,它只会每 200 毫秒(默认情况下)将水印插入到流中。因为您的作业在此之前很久就完成了,所以您的作业遇到的唯一水印是 Flink 在每个有限流的末尾注入的水印(值为 MAX_WATERMARK)。迟到是相对于水印而言的,你预计会迟到的事件却在水印之前到达。
通过切换到标点水印,您可以强制水印更频繁地出现,或者更精确地出现在流中的特定点。这通常是不必要的(而且过于频繁的水印会导致开销),但是当您想要对水印的顺序进行强有力的控制时会很有帮助。
至于怎么写测试,你可以看看
更新:
与 BoundedOutOfOrdernessTimestampExtractor 关联的时间间隔是流的预期乱序程度的规范。在这个范围内到达的事件不被认为是迟到的,并且事件时间计时器在这个延迟结束之前不会触发,从而为乱序事件的到达留出时间。 allowedLateness 仅适用于 window API,并描述框架在正常 window 触发时间后保持 window 状态多长时间,以便事件仍可添加到 window 并导致延迟触发。在这个额外的时间间隔之后,window 状态被清除,后续事件被发送到侧输出(如果配置)。
所以当您使用 BoundedOutOfOrdernessTimestampExtractor<MyEvent>(Time.seconds(10))
时,您 而不是 说 "wait 10 seconds after every event in case earlier events might still arrive"。但是你是说你的事件最多应该有 10 秒的乱序。因此,如果您正在处理实时事件流,这意味着您将等待 最多 10 秒,以防更早的事件到达。 (而且,如果您正在处理历史数据,那么您可能能够在 1 秒内处理 10 秒的数据,也可能不会——知道您将等待 n 秒的事件时间过去并不能说明实际需要多长时间。 )
有关此主题的更多信息,请参阅 Event Time and Watermarks。