Matlab 的 VARMAX 回归 parameters/coefficients nX & b
Matlab's VARMAX regression parameters/coefficients nX & b
我在理解 vgxset 参数的解释时遇到了一些麻烦。刚接触时间序列领域可能是我问题的一部分。
vgxset 帮助页面 (http://www.mathworks.com/help/econ/vgxset.html) 说它用于广义模型结构 VARMAX,我假设我只是将其中的一部分用于 VARMA。我基本上是想弄清楚哪些参数属于 VARMA,而不是 VARMAX 的附加参数。我假设(也许是错误的)nX 和 b 属于外生变量。不幸的是,我在互联网上没有找到很多关于 VARMAX 模型的流行符号约定的信息,所以很难确定。
VARMAX (http://support.sas.com/documentation/cdl/en/etsug/67525/HTML/default/viewer.htm#etsug_varmax_details02.htm) 的 SAS 页面显示,如果您有 "r" 个外生输入和 k 个时间序列,并且如果您回顾 "s" 个时间步长的价值外生输入,那么你需要 "s" 个系数矩阵,每个矩阵的大小为 (k)x(r)。
这似乎与 vgxset 页面不一致,它只是提供了一个回归参数的 nX 向量 "b"。所以我认为 nX 和 b 属于外生输入的假设似乎是错误的,但我不确定它们在 VARMAX 模型中还能指代什么。此外,在给出的所有 3 个示例中,nX 似乎设置为 VARMAX(p,q,s) 中的第三个参数 "s"。不过,这并不完全清楚,因为在所有示例中,p=s=2.
有人能解释一下 VARMAX 参数 "b" 和 "nX" 吗?
2015 年 5 月 16 日星期六 6:09:20 上午 UTC-4,Rick 写道:
Your assessment is generally correct, "nX" and "b" parameters do
indeed correspond to the exogenous input data "x(t)". The number of
columns (i.e., time series) in x(t) is "nX" and is what SAS calls
"r", and the coefficient vector "b" is its regression coefficient.
I think the distinction here, and perhaps your confusion, is that
SAS incorporates exogenous data x(t) as what's generally called a
"distributed lag structure" in which they specify an r-by-T
predictor time series and allow this entire series to be lagged
using lag operator polynomial notation as are the AR and MA
components of the model.
MATLAB's Econometrics Toolbox, adopts a more classical regression
component approach. Any exogenous data is included as a simple
regression component and is not associated with a lag operator
polynomial.
In this convention, if the user wants to include lags of x(t), then
they would simply create the appropriate lag of x(t) and include it
as additional series (i.e., additional columns of a larger
multi-variate exogenous/predictor matrix, say X(t)).
See the utility function LAGMATRIX.
Note that both conventions are perfectly correct. Personally, I feel
that regression component approach is slightly more flexible since
it does not require you to include "s" lags of all series in x(t).
有意思。我仍在思考如何使用回归来确定滞后系数。事实证明,我看过的大量在线教程信息和硬拷贝库文本并没有真正给出新值到过去值的理论投影与使用样本数据的实际回归之间的太多解释性转换。您的描述使这更具体。谢谢。
AFTERNOTE:为了与我被建议的最佳实践保持一致,我发布了指向我提出这个问题的论坛的链接:
http://www.mathworks.com/matlabcentral/newsreader/view_thread/341064
https://stats.stackexchange.com/questions/152578/matlabs-varmax-regression-parameters-coefficients-nx-b
我在理解 vgxset 参数的解释时遇到了一些麻烦。刚接触时间序列领域可能是我问题的一部分。
vgxset 帮助页面 (http://www.mathworks.com/help/econ/vgxset.html) 说它用于广义模型结构 VARMAX,我假设我只是将其中的一部分用于 VARMA。我基本上是想弄清楚哪些参数属于 VARMA,而不是 VARMAX 的附加参数。我假设(也许是错误的)nX 和 b 属于外生变量。不幸的是,我在互联网上没有找到很多关于 VARMAX 模型的流行符号约定的信息,所以很难确定。
VARMAX (http://support.sas.com/documentation/cdl/en/etsug/67525/HTML/default/viewer.htm#etsug_varmax_details02.htm) 的 SAS 页面显示,如果您有 "r" 个外生输入和 k 个时间序列,并且如果您回顾 "s" 个时间步长的价值外生输入,那么你需要 "s" 个系数矩阵,每个矩阵的大小为 (k)x(r)。
这似乎与 vgxset 页面不一致,它只是提供了一个回归参数的 nX 向量 "b"。所以我认为 nX 和 b 属于外生输入的假设似乎是错误的,但我不确定它们在 VARMAX 模型中还能指代什么。此外,在给出的所有 3 个示例中,nX 似乎设置为 VARMAX(p,q,s) 中的第三个参数 "s"。不过,这并不完全清楚,因为在所有示例中,p=s=2.
有人能解释一下 VARMAX 参数 "b" 和 "nX" 吗?
2015 年 5 月 16 日星期六 6:09:20 上午 UTC-4,Rick 写道:
Your assessment is generally correct, "nX" and "b" parameters do indeed correspond to the exogenous input data "x(t)". The number of columns (i.e., time series) in x(t) is "nX" and is what SAS calls "r", and the coefficient vector "b" is its regression coefficient.
I think the distinction here, and perhaps your confusion, is that SAS incorporates exogenous data x(t) as what's generally called a "distributed lag structure" in which they specify an r-by-T predictor time series and allow this entire series to be lagged using lag operator polynomial notation as are the AR and MA components of the model.
MATLAB's Econometrics Toolbox, adopts a more classical regression component approach. Any exogenous data is included as a simple regression component and is not associated with a lag operator polynomial.
In this convention, if the user wants to include lags of x(t), then they would simply create the appropriate lag of x(t) and include it as additional series (i.e., additional columns of a larger multi-variate exogenous/predictor matrix, say X(t)).
See the utility function LAGMATRIX.
Note that both conventions are perfectly correct. Personally, I feel that regression component approach is slightly more flexible since it does not require you to include "s" lags of all series in x(t).
有意思。我仍在思考如何使用回归来确定滞后系数。事实证明,我看过的大量在线教程信息和硬拷贝库文本并没有真正给出新值到过去值的理论投影与使用样本数据的实际回归之间的太多解释性转换。您的描述使这更具体。谢谢。
AFTERNOTE:为了与我被建议的最佳实践保持一致,我发布了指向我提出这个问题的论坛的链接:
http://www.mathworks.com/matlabcentral/newsreader/view_thread/341064