打印二叉树的边界
To print the boundary of Binary Tree
我在采访中被要求打印二叉树的边界。例如。
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10
答案将是:1、2、4、8、9、10、7、3
我给出了以下答案。
第一种方法:
我用了一个 Bool 变量来解决上面的问题。
void printLeftEdges(BinaryTree *p, bool print) {
if (!p) return;
if (print || (!p->left && !p->right))
cout << p->data << " ";
printLeftEdges(p->left, print);
printLeftEdges(p->right, false);
}
void printRightEdges(BinaryTree *p, bool print) {
if (!p) return;
printRightEdges(p->left, false);
printRightEdges(p->right, print);
if (print || (!p->left && !p->right))
cout << p->data << " ";
}
void printOuterEdges(BinaryTree *root) {
if (!root) return;
cout << root->data << " ";
printLeftEdges(root->left, true);
printRightEdges(root->right, true);
}
他的回应:您已经多次使用 Bool 变量。你能不用那个解决这个问题吗?
第二种方法:
我简单的用树遍历解决了这个问题
1. Print the left boundary in top-down manner.
2. Print all leaf nodes from left to right, which can again be sub-divided into two sub-parts:
2.1 Print all leaf nodes of left sub-tree from left to right.
2.2 Print all leaf nodes of right subtree from left to right.
3. Print the right boundary in bottom-up manner.
他的回应:他对这种方法也不满意。他告诉你遍历树 3 次。那太过分了。有的话再给个解决办法
第三种方法:
这次我去了 Level Order traversal (BFS).
1: Print starting and ending node of each level
2: For each other node check if its both the children are <b>NULL</b> then print that node too.
他的回应:他似乎对这种方法也不满意,因为这种方法占用了 O(n) 阶的额外内存。
我的问题是,告诉我一个遍历树单次的方法,不使用任何布尔变量,不使用任何额外的内存。可能吗?
我想这应该可以解决问题:
traverse(BinaryTree *root)
{
if (!root) return;
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //special function for outer left
if (root->right) traverseR(root->right); //special function for outer right
}
traverseL(BinaryTree *p)
{
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //still in outer left
if (root->right) traverseC(root->right);
}
traverseR(BinaryTree *p)
{
if (root->left ) traverseC(root->left );
if (root->right) traverseR(root->right); //still in outer right
cout << p->data << " ";
}
traverseC(BinaryTree *p)
{
if (!root->left && !root->right) //bottom reached
cout << p->data << " ";
else
{
if (root->left ) traverseC(root->left );
if (root->right) traverseC(root->right);
}
}
从 traverse
函数开始。
摆脱了每个方法开头的空查询(避免在每一端调用一个函数)。
不需要bool变量,简单的使用三种不同的遍历方式:
- 左边一个,输出遍历前的结点
- 右边一个,遍历后输出结点
- 一个用于所有其他节点,如果没有兄弟节点则输出该节点。
下面是Python3中的递归解法,时间复杂度为O(n)。这里的算法是从上到下打印最左边的节点,从左到右打印叶节点,从下到上打印最右边的节点。为左右树遍历添加布尔标志 (isLeft,isRight)
简化了代码并推动了 O(n) 的时间复杂度。
#Print tree boundary nodes
def TreeBoundry(node,isLeft,isRight):
#Left most node and leaf nodes
if(isLeft or isLeaf(node)): print(node.data,end=' ')
#Process next left node
if(node.getLeft() is not None): TreeBoundry(node.getLeft(), True,False)
#Process next right node
if(node.getRight() is not None):TreeBoundry(node.getRight(), False,True)
#Right most node
if(isRight and not isLeft and not isLeaf(node)):print(node.data,end=' ')
#Check is a node is leaf
def isLeaf(node):
if (node.getLeft() is None and node.getRight() is None):
return True
else:
return False
#Get started
#https://github.com/harishvc/challenges/blob/master/binary-tree-edge-nodes.py
TreeBoundry(root,True,True)
方法O(n) No extra space and single traversal of tree.
我把Tree Nodes分为四种类型的节点
Type 1 -> Nodes which form the left boundary(eg 8)
Type 0 -> Nodes which do not form the boundar(eg 12)
Type 3 -> Nodes which form the right boundary(eg 22)
Leaf Nodes(eg 4,10,14)
在我的方法中,我只是在做树遍历的递归方法(刚刚修改),我的函数是这种形式
void recFunc(btNode *temp,int type)
{
//Leaf Nodes
if((temp->left == NULL)&&(temp->right == NULL))
cout << temp->data << " ";
// type -1 Nodes must be printed before their children
else if(type == 1)cout << temp->data << " ";
else {;}
if(type == 3)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,3);
//type 3 nodes must be printed after their children
cout << temp->data << " ";
}
else if(type == 1)
{
if(temp->left)recFunc(temp->left,1);
if(temp->right)recFunc(temp->right,0);
}
else if(type == 0)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,0);
}
else {;}
}
我修改了
- 在我的递归函数中类型1的节点必须使它们的左节点
作为类型 1,必须在调用它们的 children 之前打印(如果它们
存在)
- 类型 3 的节点 必须以相反的顺序打印。因此它们必须是
在调用他们的 children.They 后打印还必须分配他们的
右 children 作为类型 3 节点
- 类型 0 的节点不得打印,它们将 children 指定为
类型 0 节点
- 叶节点必须直接打印,return
//解决方案的 4 个不同部分的 4 个差异列表
1) 左边界 2) 右边界 3) 左树中的叶子 4) 右树中的叶子
public class PRintBinaryTreeBoundary {
ArrayList<TreeNode> leftBorderList=new ArrayList<>();
ArrayList<TreeNode> leftLEafNode=new ArrayList<>();
ArrayList<TreeNode> rightBorderList=new ArrayList<>();
ArrayList<TreeNode> rightLEafNode=new ArrayList<>();
public static void main(String[] args) {
// TODO Auto-generated method stub
/* 1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10*/
TreeNode one=new TreeNode(1);
TreeNode two=new TreeNode(2);
TreeNode three=new TreeNode(3);
TreeNode four=new TreeNode(4);
TreeNode five=new TreeNode(5);
TreeNode six=new TreeNode(6);
TreeNode seven=new TreeNode(7);
TreeNode eight=new TreeNode(8);
TreeNode nine=new TreeNode(9);
TreeNode ten=new TreeNode(10);
one.left=two; one.right=three;
two.left=four;two.right=five;
three.left=six;three.right=seven;
five.left=eight;
six.right=nine;
seven.right=ten;
PRintBinaryTreeBoundary p=new PRintBinaryTreeBoundary();
p.print(one);
}
private void print(TreeNode one) {
System.out.println(one.val);
populateLeftBorderList(one.left);
populateRightBorderList(one.right);
populateLeafOfLeftTree(one.left);
populateLeafOfRightTree(one.right);
System.out.println(this.leftBorderList);
System.out.println(this.leftLEafNode);
System.out.println(this.rightLEafNode);
Collections.reverse(this.rightBorderList);
System.out.println(this.rightBorderList);
}
private void populateLeftBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.leftBorderList.add(n);
n = n.left;
}
}
private void populateRightBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.rightBorderList.add(n);
n = n.right;
}
}
private void populateLeafOfLeftTree(TreeNode leftnode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(leftnode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.leftBorderList.contains(n)) {
leftLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
private void populateLeafOfRightTree(TreeNode rightNode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(rightNode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.rightBorderList.contains(n)) {
rightLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
}
希望这对您有所帮助:
// Java program to print boundary traversal of binary tree
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node {
int data;
Node left, right;
Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree {
Node root;
// A simple function to print leaf nodes of a binary tree
void printLeaves(Node node)
{
if (node != null) {
printLeaves(node.left);
// Print it if it is a leaf node
if (node.left == null && node.right == null)
System.out.print(node.data + " ");
printLeaves(node.right);
}
}
// A function to print all left boundary nodes, except a leaf node.
// Print the nodes in TOP DOWN manner
void printBoundaryLeft(Node node)
{
if (node != null) {
if (node.left != null) {
// to ensure top down order, print the node
// before calling itself for left subtree
System.out.print(node.data + " ");
printBoundaryLeft(node.left);
}
else if (node.right != null) {
System.out.print(node.data + " ");
printBoundaryLeft(node.right);
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to print all right boundary nodes, except a leaf node
// Print the nodes in BOTTOM UP manner
void printBoundaryRight(Node node)
{
if (node != null) {
if (node.right != null) {
// to ensure bottom up order, first call for right
// subtree, then print this node
printBoundaryRight(node.right);
System.out.print(node.data + " ");
}
else if (node.left != null) {
printBoundaryRight(node.left);
System.out.print(node.data + " ");
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to do boundary traversal of a given binary tree
void printBoundary(Node node)
{
if (node != null) {
System.out.print(node.data + " ");
// Print the left boundary in top-down manner.
printBoundaryLeft(node.left);
// Print all leaf nodes
printLeaves(node.left);
printLeaves(node.right);
// Print the right boundary in bottom-up manner
printBoundaryRight(node.right);
}
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
tree.root.right = new Node(22);
tree.root.right.right = new Node(25);
tree.printBoundary(tree.root);
}
}
下面是解决重复计数问题的Java O(n) 时间复杂度的解决方案(例如:左节点也是叶节点)
class Node {
Node left;
Node right;
int data;
Node(int d) {
data = d;
left = right = null;
}
}
class BinaryTree {
Node root;
public void getBoundary() {
preorderLeft(root);
inorderLeaves(root);
postorderRight(root);
}
public boolean isLeaf(Node node) {
if (node != null && node.left == null && node.right == null) return true;
return false;
}
public void preorderLeft(Node start) {
if (start != null && isLeaf(start) == false) System.out.print(start.data + " ");
if (start.left != null) preorderLeftSide(start.left);
}
public void inorderLeaves(Node start) {
if(start == null) return;
if(start.left != null) inorderLeaves(start.left);
if(start.left == null && start.right == null) System.out.print(start.data + " ");
if(start.right != null) inorderLeaves(start.right);
}
public void postorderRight(Node start) {
if(start.right != null) postorderRightSide(start.right);
if(start != null && isLeaf(start) == false) System.out.print(start.data + " ");
}
}
这个 YouTube 视频很有帮助。作者撰写评论解释每种方法并展示如何跳过重复项。 https://youtu.be/7GzuxmZ34cI
通过使用距根节点和级别的垂直距离,我们可以使用列表和映射来解决它。
map<int,int>tmap; #store the vertical distance and level
list<int>llist; #store the node values
void Buildfunction(root,d, l){
if(root == NULL){
return;
} else if(tmap.count(d) == 0){
tmap[d] = l;
llist.push_back(root->data);
} else if((root->left == NULL && root->right==NULL) || tmap[d] < l){
tmap[d] = l;
llist.push_back(root->data);
}
Buildfunction(root->left,d--,l++);
Buildfunction(root->right,d++,l++);
}
其中d指向从当前节点到根的垂直距离
l 指向当前节点从0
开始的level
以下 python 解决方案对我有用。它处理所有情况。
基于@azt
的解决方案
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def printLeaves(root):
if (root):
printLeaves(root.left)
if root.left is None and root.right is None:
print(root.data),
printLeaves(root.right)
def printBoundaryC(node):
if not node.left or not node.right:
print(node.data)
if node.left:
printBoundaryC(node.left)
if node.right:
printBoundaryC(node.right)
def printBoundaryLeft(root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryC(root.right)
def printBoundaryRight(root):
if root.right:
printBoundaryRight(root.right)
elif root.left:
printBoundaryC(root.left)
print(root.data)
def printBoundary(root):
if (root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryRight(root.right)
root = Node(20)
root.left = Node(8)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.left.right = Node(5)
root.left.right.right = Node(14)
root.right = Node(22)
root.right.right = Node(25)
printBoundary(root)
我在采访中被要求打印二叉树的边界。例如。
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10
答案将是:1、2、4、8、9、10、7、3
我给出了以下答案。
第一种方法:
我用了一个 Bool 变量来解决上面的问题。
void printLeftEdges(BinaryTree *p, bool print) {
if (!p) return;
if (print || (!p->left && !p->right))
cout << p->data << " ";
printLeftEdges(p->left, print);
printLeftEdges(p->right, false);
}
void printRightEdges(BinaryTree *p, bool print) {
if (!p) return;
printRightEdges(p->left, false);
printRightEdges(p->right, print);
if (print || (!p->left && !p->right))
cout << p->data << " ";
}
void printOuterEdges(BinaryTree *root) {
if (!root) return;
cout << root->data << " ";
printLeftEdges(root->left, true);
printRightEdges(root->right, true);
}
他的回应:您已经多次使用 Bool 变量。你能不用那个解决这个问题吗?
第二种方法:
我简单的用树遍历解决了这个问题
1. Print the left boundary in top-down manner.
2. Print all leaf nodes from left to right, which can again be sub-divided into two sub-parts:
2.1 Print all leaf nodes of left sub-tree from left to right.
2.2 Print all leaf nodes of right subtree from left to right.
3. Print the right boundary in bottom-up manner.
他的回应:他对这种方法也不满意。他告诉你遍历树 3 次。那太过分了。有的话再给个解决办法
第三种方法: 这次我去了 Level Order traversal (BFS).
1: Print starting and ending node of each level
2: For each other node check if its both the children are <b>NULL</b> then print that node too.
他的回应:他似乎对这种方法也不满意,因为这种方法占用了 O(n) 阶的额外内存。
我的问题是,告诉我一个遍历树单次的方法,不使用任何布尔变量,不使用任何额外的内存。可能吗?
我想这应该可以解决问题:
traverse(BinaryTree *root)
{
if (!root) return;
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //special function for outer left
if (root->right) traverseR(root->right); //special function for outer right
}
traverseL(BinaryTree *p)
{
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //still in outer left
if (root->right) traverseC(root->right);
}
traverseR(BinaryTree *p)
{
if (root->left ) traverseC(root->left );
if (root->right) traverseR(root->right); //still in outer right
cout << p->data << " ";
}
traverseC(BinaryTree *p)
{
if (!root->left && !root->right) //bottom reached
cout << p->data << " ";
else
{
if (root->left ) traverseC(root->left );
if (root->right) traverseC(root->right);
}
}
从 traverse
函数开始。
摆脱了每个方法开头的空查询(避免在每一端调用一个函数)。
不需要bool变量,简单的使用三种不同的遍历方式:
- 左边一个,输出遍历前的结点
- 右边一个,遍历后输出结点
- 一个用于所有其他节点,如果没有兄弟节点则输出该节点。
下面是Python3中的递归解法,时间复杂度为O(n)。这里的算法是从上到下打印最左边的节点,从左到右打印叶节点,从下到上打印最右边的节点。为左右树遍历添加布尔标志 (isLeft,isRight)
简化了代码并推动了 O(n) 的时间复杂度。
#Print tree boundary nodes
def TreeBoundry(node,isLeft,isRight):
#Left most node and leaf nodes
if(isLeft or isLeaf(node)): print(node.data,end=' ')
#Process next left node
if(node.getLeft() is not None): TreeBoundry(node.getLeft(), True,False)
#Process next right node
if(node.getRight() is not None):TreeBoundry(node.getRight(), False,True)
#Right most node
if(isRight and not isLeft and not isLeaf(node)):print(node.data,end=' ')
#Check is a node is leaf
def isLeaf(node):
if (node.getLeft() is None and node.getRight() is None):
return True
else:
return False
#Get started
#https://github.com/harishvc/challenges/blob/master/binary-tree-edge-nodes.py
TreeBoundry(root,True,True)
方法O(n) No extra space and single traversal of tree.
我把Tree Nodes分为四种类型的节点
Type 1 -> Nodes which form the left boundary(eg 8)
Type 0 -> Nodes which do not form the boundar(eg 12)
Type 3 -> Nodes which form the right boundary(eg 22)
Leaf Nodes(eg 4,10,14)
在我的方法中,我只是在做树遍历的递归方法(刚刚修改),我的函数是这种形式
void recFunc(btNode *temp,int type)
{
//Leaf Nodes
if((temp->left == NULL)&&(temp->right == NULL))
cout << temp->data << " ";
// type -1 Nodes must be printed before their children
else if(type == 1)cout << temp->data << " ";
else {;}
if(type == 3)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,3);
//type 3 nodes must be printed after their children
cout << temp->data << " ";
}
else if(type == 1)
{
if(temp->left)recFunc(temp->left,1);
if(temp->right)recFunc(temp->right,0);
}
else if(type == 0)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,0);
}
else {;}
}
我修改了
- 在我的递归函数中类型1的节点必须使它们的左节点 作为类型 1,必须在调用它们的 children 之前打印(如果它们 存在)
- 类型 3 的节点 必须以相反的顺序打印。因此它们必须是 在调用他们的 children.They 后打印还必须分配他们的 右 children 作为类型 3 节点
- 类型 0 的节点不得打印,它们将 children 指定为 类型 0 节点
- 叶节点必须直接打印,return
//解决方案的 4 个不同部分的 4 个差异列表 1) 左边界 2) 右边界 3) 左树中的叶子 4) 右树中的叶子
public class PRintBinaryTreeBoundary {
ArrayList<TreeNode> leftBorderList=new ArrayList<>();
ArrayList<TreeNode> leftLEafNode=new ArrayList<>();
ArrayList<TreeNode> rightBorderList=new ArrayList<>();
ArrayList<TreeNode> rightLEafNode=new ArrayList<>();
public static void main(String[] args) {
// TODO Auto-generated method stub
/* 1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10*/
TreeNode one=new TreeNode(1);
TreeNode two=new TreeNode(2);
TreeNode three=new TreeNode(3);
TreeNode four=new TreeNode(4);
TreeNode five=new TreeNode(5);
TreeNode six=new TreeNode(6);
TreeNode seven=new TreeNode(7);
TreeNode eight=new TreeNode(8);
TreeNode nine=new TreeNode(9);
TreeNode ten=new TreeNode(10);
one.left=two; one.right=three;
two.left=four;two.right=five;
three.left=six;three.right=seven;
five.left=eight;
six.right=nine;
seven.right=ten;
PRintBinaryTreeBoundary p=new PRintBinaryTreeBoundary();
p.print(one);
}
private void print(TreeNode one) {
System.out.println(one.val);
populateLeftBorderList(one.left);
populateRightBorderList(one.right);
populateLeafOfLeftTree(one.left);
populateLeafOfRightTree(one.right);
System.out.println(this.leftBorderList);
System.out.println(this.leftLEafNode);
System.out.println(this.rightLEafNode);
Collections.reverse(this.rightBorderList);
System.out.println(this.rightBorderList);
}
private void populateLeftBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.leftBorderList.add(n);
n = n.left;
}
}
private void populateRightBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.rightBorderList.add(n);
n = n.right;
}
}
private void populateLeafOfLeftTree(TreeNode leftnode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(leftnode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.leftBorderList.contains(n)) {
leftLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
private void populateLeafOfRightTree(TreeNode rightNode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(rightNode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.rightBorderList.contains(n)) {
rightLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
}
希望这对您有所帮助:
// Java program to print boundary traversal of binary tree
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node {
int data;
Node left, right;
Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree {
Node root;
// A simple function to print leaf nodes of a binary tree
void printLeaves(Node node)
{
if (node != null) {
printLeaves(node.left);
// Print it if it is a leaf node
if (node.left == null && node.right == null)
System.out.print(node.data + " ");
printLeaves(node.right);
}
}
// A function to print all left boundary nodes, except a leaf node.
// Print the nodes in TOP DOWN manner
void printBoundaryLeft(Node node)
{
if (node != null) {
if (node.left != null) {
// to ensure top down order, print the node
// before calling itself for left subtree
System.out.print(node.data + " ");
printBoundaryLeft(node.left);
}
else if (node.right != null) {
System.out.print(node.data + " ");
printBoundaryLeft(node.right);
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to print all right boundary nodes, except a leaf node
// Print the nodes in BOTTOM UP manner
void printBoundaryRight(Node node)
{
if (node != null) {
if (node.right != null) {
// to ensure bottom up order, first call for right
// subtree, then print this node
printBoundaryRight(node.right);
System.out.print(node.data + " ");
}
else if (node.left != null) {
printBoundaryRight(node.left);
System.out.print(node.data + " ");
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to do boundary traversal of a given binary tree
void printBoundary(Node node)
{
if (node != null) {
System.out.print(node.data + " ");
// Print the left boundary in top-down manner.
printBoundaryLeft(node.left);
// Print all leaf nodes
printLeaves(node.left);
printLeaves(node.right);
// Print the right boundary in bottom-up manner
printBoundaryRight(node.right);
}
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
tree.root.right = new Node(22);
tree.root.right.right = new Node(25);
tree.printBoundary(tree.root);
}
}
下面是解决重复计数问题的Java O(n) 时间复杂度的解决方案(例如:左节点也是叶节点)
class Node {
Node left;
Node right;
int data;
Node(int d) {
data = d;
left = right = null;
}
}
class BinaryTree {
Node root;
public void getBoundary() {
preorderLeft(root);
inorderLeaves(root);
postorderRight(root);
}
public boolean isLeaf(Node node) {
if (node != null && node.left == null && node.right == null) return true;
return false;
}
public void preorderLeft(Node start) {
if (start != null && isLeaf(start) == false) System.out.print(start.data + " ");
if (start.left != null) preorderLeftSide(start.left);
}
public void inorderLeaves(Node start) {
if(start == null) return;
if(start.left != null) inorderLeaves(start.left);
if(start.left == null && start.right == null) System.out.print(start.data + " ");
if(start.right != null) inorderLeaves(start.right);
}
public void postorderRight(Node start) {
if(start.right != null) postorderRightSide(start.right);
if(start != null && isLeaf(start) == false) System.out.print(start.data + " ");
}
}
这个 YouTube 视频很有帮助。作者撰写评论解释每种方法并展示如何跳过重复项。 https://youtu.be/7GzuxmZ34cI
通过使用距根节点和级别的垂直距离,我们可以使用列表和映射来解决它。
map<int,int>tmap; #store the vertical distance and level
list<int>llist; #store the node values
void Buildfunction(root,d, l){
if(root == NULL){
return;
} else if(tmap.count(d) == 0){
tmap[d] = l;
llist.push_back(root->data);
} else if((root->left == NULL && root->right==NULL) || tmap[d] < l){
tmap[d] = l;
llist.push_back(root->data);
}
Buildfunction(root->left,d--,l++);
Buildfunction(root->right,d++,l++);
}
其中d指向从当前节点到根的垂直距离 l 指向当前节点从0
开始的level以下 python 解决方案对我有用。它处理所有情况。 基于@azt
的解决方案class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def printLeaves(root):
if (root):
printLeaves(root.left)
if root.left is None and root.right is None:
print(root.data),
printLeaves(root.right)
def printBoundaryC(node):
if not node.left or not node.right:
print(node.data)
if node.left:
printBoundaryC(node.left)
if node.right:
printBoundaryC(node.right)
def printBoundaryLeft(root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryC(root.right)
def printBoundaryRight(root):
if root.right:
printBoundaryRight(root.right)
elif root.left:
printBoundaryC(root.left)
print(root.data)
def printBoundary(root):
if (root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryRight(root.right)
root = Node(20)
root.left = Node(8)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.left.right = Node(5)
root.left.right.right = Node(14)
root.right = Node(22)
root.right.right = Node(25)
printBoundary(root)