预期的二维数组,得到一维数组

Expected 2D array, got 1D array

我 运行 来自 github 的以下代码,但出现错误。怎么了?

https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Time%20Series%20ANN%20%26%20LSTM%20VIX.ipynb

单元格:

# scale train and test data to [-1, 1]
scaler = MinMaxScaler(feature_range=(-1, 1))
train_sc = scaler.fit_transform(train)
test_sc = scaler.transform(test)

错误:

ValueError: Expected 2D array, got 1D array instead:
array=[17.24     18.190001 19.219999 ... 10.47     10.18     11.04    ].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

制作该笔记本的人使用的是非常旧的 sklearn 版本。简而言之,你的特征是 [row_1, row_2...row_n] 的形式,而它们应该是 [[row_1], [row_2]...[row_n]].

的形式

因此,使用这个:

new_shape = (len(train), 1)

train_sc = scaler.fit_transform(np.reshape(train, new_shape))
test_sc = scaler.transform(np.reshape(test, new_shape))

解决了添加以下方法的问题,这些方法显然将训练和测试对象转换为 numpy 数组。对吗?

scaler = MinMaxScaler(feature_range=(-1, 1))
train_sc = scaler.fit_transform(train.values.reshape(-1, 1))
test_sc = scaler.transform(test.values.reshape(-1,1))