fetch-min-size & max-poll-records sping kafka 配置没有按预期工作
fetch-min-size & max-poll-records sping kafka configurations does not work as expected
我正在使用 spring kafka 开发一个 Spring 启动应用程序,它会监听 kafka 的单个主题,然后分离各个类别的记录,创建一个 json 文件输出并将其上传到 AWS S3。
我在 Kafka 主题中收到大量数据,我需要确保 json 文件被适当地分块以限制上传到 S3 的 json 数量。
下面是我的 application.yml
kafka 消费者配置。
spring:
kafka:
consumer:
group-id: newton
auto-offset-reset: earliest
fetch-max-wait:
seconds: 1
fetch-min-size: 500000000
max-poll-records: 50000000
value-deserializer: com.forwarding.application.consumer.model.deserializer.MeasureDeserializer
我已经创建了一个用于连续阅读主题的监听器。
即使有上述配置,我在控制台中收到的记录如下:
2019-03-27T15:25:56.02+0530 [APP/PROC/WEB/0] OUT 2019-03-27 09:55:56.024 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 56. No Of measures: 60
2019-03-27T15:25:56.21+0530 [APP/PROC/WEB/2] OUT 2019-03-27 09:55:56.210 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 80. No Of measures: 96
2019-03-27T15:25:56.56+0530 [APP/PROC/WEB/0] OUT 2019-03-27 09:55:56.560 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 76. No Of measures: 39
2019-03-27T15:25:56.73+0530 [APP/PROC/WEB/2] OUT 2019-03-27 09:55:56.732 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 77. No Of measures: 66
任何人都可以让我知道可以根据 application.yml
中的配置配置什么来获取接收到的记录吗?
我刚刚复制了您的配置(最大等待时间除外 - 请参阅我使用的语法)并且运行良好...
spring:
kafka:
consumer:
group-id: newton
auto-offset-reset: earliest
fetch-max-wait: 1s
fetch-min-size: 500000000
max-poll-records: 50000000
2019-03-27 13:43:55.454 INFO 98982 --- [ main] o.a.k.clients.consumer.ConsumerConfig : ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092]
check.crcs = true
client.id =
connections.max.idle.ms = 540000
default.api.timeout.ms = 60000
enable.auto.commit = true
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 1000
fetch.min.bytes = 500000000
group.id = newton
heartbeat.interval.ms = 3000
interceptor.classes = []
internal.leave.group.on.close = true
isolation.level = read_uncommitted
key.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 50000000
...
您使用 ...properties
属性.
将不直接支持的任意属性设置为启动属性
例如
spring:
kafka:
consumer:
properties:
max.poll.interval.ms: 300000
或
spring:
kafka:
consumer:
properties:
max:
poll:
interval:
ms: 300000
The properties supported by auto configuration are shown in Appendix A, Common application properties. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.
The first few of these properties apply to all components (producers, consumers, admins, and streams) but can be specified at the component level if you wish to use different values. Apache Kafka designates properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do not have a default value.
Only a subset of the properties supported by Kafka are available directly through the KafkaProperties class. If you wish to configure the producer or consumer with additional properties that are not directly supported, use the following properties:
spring.kafka.properties.prop.one=first
spring.kafka.admin.properties.prop.two=second
spring.kafka.consumer.properties.prop.three=third
spring.kafka.producer.properties.prop.four=fourth
spring.kafka.streams.properties.prop.five=fifth
我正在使用 spring kafka 开发一个 Spring 启动应用程序,它会监听 kafka 的单个主题,然后分离各个类别的记录,创建一个 json 文件输出并将其上传到 AWS S3。
我在 Kafka 主题中收到大量数据,我需要确保 json 文件被适当地分块以限制上传到 S3 的 json 数量。
下面是我的 application.yml
kafka 消费者配置。
spring:
kafka:
consumer:
group-id: newton
auto-offset-reset: earliest
fetch-max-wait:
seconds: 1
fetch-min-size: 500000000
max-poll-records: 50000000
value-deserializer: com.forwarding.application.consumer.model.deserializer.MeasureDeserializer
我已经创建了一个用于连续阅读主题的监听器。
即使有上述配置,我在控制台中收到的记录如下:
2019-03-27T15:25:56.02+0530 [APP/PROC/WEB/0] OUT 2019-03-27 09:55:56.024 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 56. No Of measures: 60
2019-03-27T15:25:56.21+0530 [APP/PROC/WEB/2] OUT 2019-03-27 09:55:56.210 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 80. No Of measures: 96
2019-03-27T15:25:56.56+0530 [APP/PROC/WEB/0] OUT 2019-03-27 09:55:56.560 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 76. No Of measures: 39
2019-03-27T15:25:56.73+0530 [APP/PROC/WEB/2] OUT 2019-03-27 09:55:56.732 INFO 8 --- [ntainer#0-0-C-1] c.s.n.f.a.s.impl.ConsumerServiceImpl : Time taken(ms) 77. No Of measures: 66
任何人都可以让我知道可以根据 application.yml
中的配置配置什么来获取接收到的记录吗?
我刚刚复制了您的配置(最大等待时间除外 - 请参阅我使用的语法)并且运行良好...
spring:
kafka:
consumer:
group-id: newton
auto-offset-reset: earliest
fetch-max-wait: 1s
fetch-min-size: 500000000
max-poll-records: 50000000
2019-03-27 13:43:55.454 INFO 98982 --- [ main] o.a.k.clients.consumer.ConsumerConfig : ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092]
check.crcs = true
client.id =
connections.max.idle.ms = 540000
default.api.timeout.ms = 60000
enable.auto.commit = true
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 1000
fetch.min.bytes = 500000000
group.id = newton
heartbeat.interval.ms = 3000
interceptor.classes = []
internal.leave.group.on.close = true
isolation.level = read_uncommitted
key.deserializer = class org.apache.kafka.common.serialization.StringDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 50000000
...
您使用 ...properties
属性.
例如
spring:
kafka:
consumer:
properties:
max.poll.interval.ms: 300000
或
spring:
kafka:
consumer:
properties:
max:
poll:
interval:
ms: 300000
The properties supported by auto configuration are shown in Appendix A, Common application properties. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.
The first few of these properties apply to all components (producers, consumers, admins, and streams) but can be specified at the component level if you wish to use different values. Apache Kafka designates properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do not have a default value.
Only a subset of the properties supported by Kafka are available directly through the KafkaProperties class. If you wish to configure the producer or consumer with additional properties that are not directly supported, use the following properties:
spring.kafka.properties.prop.one=first
spring.kafka.admin.properties.prop.two=second
spring.kafka.consumer.properties.prop.three=third
spring.kafka.producer.properties.prop.four=fourth
spring.kafka.streams.properties.prop.five=fifth