使用清单在 Plotly 中动态添加跟踪
Dynamically Adding Traces In Plotly With A Checklist
我有一个包含不同年龄范围的数据集作为不同的列。我正在尝试为 Plotly 中的每个年龄段创建动态轨迹,以创建比较条形图。此外,我希望将这些轨迹连接到一个清单,这样我就可以选择在结果图中显示哪个 traces/bars。但是,我无法弄清楚如何将此清单连接到图中的结果轨迹,特别是因为我还有其他下拉列表也连接到此图。这是代码示例
Gender=xl['Gender'].unique()
Age=xl['Age'].unique()
Activity=xl['Sport'].unique()
app=dash.Dash(__name__)
app.layout=html.Div(children=
[html.Div([
html.H3('Age:', style={'paddingRight': '30px','fontSize':18}),
dcc.Checklist(
id='Age',
options=[
{'label': i, 'value': i} for i in Age],
value='18-24'
)], style={'width':'33%','display':'inline-block'}),
html.Div([
html.H3('Gender:', style={'paddingRight': '30px','fontSize':18}),
dcc.Dropdown(
id='Gender',
options=[
{'label': 'Male', 'value': 'Male'},
{'label': 'Female', 'value': 'Female'}
],
value='Male'
)], style={'width':'33%','display':'inline-block'}),
html.H3('Activity:', style={'paddingRight': '30px','fontSize':18}),
dcc.Dropdown(
id='Sport',
options=[
{'label': i, 'value': i} for i in Activity],
value='Yoga'
),
],style={'width':'33%','display':'inline-block'}),
html.Div([
dcc.Graph(id='linear')]),
html.Div([
dcc.Graph(id='linear2')
])])
@app.callback(
dash.dependencies.Output('linear','figure'),
[dash.dependencies.Input('Gender','value'),
dash.dependencies.Input('Sport','value'),
dash.dependencies.Input('Age','value')])
def update_graph(Gender_name,sport_name,age_name):
xl1=xl[xl['Gender'] == Gender_name]
xl2=xl1[xl1['Sport'] == sport_name]
xl3=xl2[xl2['Age'] == age_name]
Total_x=xl3.Date
trace1=go.Bar(x=Total_x,y=age_name?,name='6-12')
trace2=go.Bar(x=Total_x,y=age_name?,name='12-18')
trace3=go.Bar(x=Total_x,y=age_name,name='18-24')
Totallayout=go.Layout(xaxis={'title': 'Year'},
yaxis={'title': 'Participants'},
title= 'Core Player Comparison',
hovermode='closest')
return {'data':[trace2,trace1,trace3],
'layout':[Totallayout]}
我希望有人可以帮助我使用 def 更新图形功能,以便它可以 link 回到我在创建不同轨迹时创建的年龄下拉列表。如果有人能提供帮助,那将不胜感激,谢谢!
示例数据框:
日期运动性别年龄球员核心
2008 瑜伽男 6-12 2308.54 692.562
2008 瑜伽男 13-17 3551.60 1065.480
2008 瑜伽男 18-24 2663.70 799.110
2008 瑜伽男 25-34 3551.60 1065.480
2008 瑜伽男 35-44 2130.96 639.288
想法是创建一个图表,其中 "Players" 或 "Core" 是 Y 轴,日期是 x 轴,年龄是轨迹。
感谢您更新样本df
。我不确定您的目标是什么,但我有数据流过并绘制了 df
图表。这是一个功能示例:
dict_form = {
'Date': [2008, 2008, 2008, 2008, 2008],
'Sport': ['Yoga', 'Yoga', 'Yoga', 'Yoga', 'Yoga'],
'Gender': ['Male', 'Male', 'Male', 'Male', 'Male'],
'Age': ['6-12', '13-17', '18-24', '25-34', '35-44'],
'Players': [2308.54, 3551.60, 2663.70, 3551.60, 2130.96],
'Core': [692.562, 1065.480, 799.110, 1065.480, 639.288],
}
df = pandas.DataFrame.from_dict(dict_form)
app = dash.Dash(__name__)
app.layout = html.Div(children=[
html.Div(children=[
html.H3('Age:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Checklist(
id='Age',
options=[
{'label': i, 'value': i} for i in df['Age']],
values=['18-24']
)
]),
html.Div(children=[
html.H3('Gender:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Dropdown(
id='Gender',
options=[
{'label': 'Male', 'value': 'Male'},
{'label': 'Female', 'value': 'Female'}
],
value='Male'
)
], style={'width': '33%', 'display': 'inline-block'}),
html.H3('Activity:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Dropdown(
id='Sport',
options=[
{'label': i, 'value': i} for i in df['Sport']],
value='Yoga'
),
html.Div([
dcc.Graph(id='linear')]),
html.Div([
dcc.Graph(id='linear2')
])
], style={'width': '33%', 'display': 'inline-block'})
@app.callback(
dash.dependencies.Output('linear', 'figure'),
[dash.dependencies.Input('Gender', 'value'),
dash.dependencies.Input('Sport', 'value'),
dash.dependencies.Input('Age', 'values')])
def update_graph(gender_name, sport_name, age_name):
df1 = df[df['Gender'] == gender_name]
df2 = df1[df1['Sport'] == sport_name]
df3 = df2[df2['Age'].isin(age_name)]
total_x = df3.Age
trace1 = go.Bar(x=total_x, y=df3['Players'], name='Players')
trace2 = go.Bar(x=total_x, y=df3['Core'], name='Core')
total_layout = go.Layout(xaxis={'title': 'Year'},
yaxis={'title': 'Participants'},
title='Core Player Comparison',
hovermode='closest')
return {'data': [trace2, trace1],
'layout': [total_layout]}
if __name__ == '__main__':
app.run_server(debug=True, threaded=True)
这是图表的屏幕截图:
我有一个包含不同年龄范围的数据集作为不同的列。我正在尝试为 Plotly 中的每个年龄段创建动态轨迹,以创建比较条形图。此外,我希望将这些轨迹连接到一个清单,这样我就可以选择在结果图中显示哪个 traces/bars。但是,我无法弄清楚如何将此清单连接到图中的结果轨迹,特别是因为我还有其他下拉列表也连接到此图。这是代码示例
Gender=xl['Gender'].unique()
Age=xl['Age'].unique()
Activity=xl['Sport'].unique()
app=dash.Dash(__name__)
app.layout=html.Div(children=
[html.Div([
html.H3('Age:', style={'paddingRight': '30px','fontSize':18}),
dcc.Checklist(
id='Age',
options=[
{'label': i, 'value': i} for i in Age],
value='18-24'
)], style={'width':'33%','display':'inline-block'}),
html.Div([
html.H3('Gender:', style={'paddingRight': '30px','fontSize':18}),
dcc.Dropdown(
id='Gender',
options=[
{'label': 'Male', 'value': 'Male'},
{'label': 'Female', 'value': 'Female'}
],
value='Male'
)], style={'width':'33%','display':'inline-block'}),
html.H3('Activity:', style={'paddingRight': '30px','fontSize':18}),
dcc.Dropdown(
id='Sport',
options=[
{'label': i, 'value': i} for i in Activity],
value='Yoga'
),
],style={'width':'33%','display':'inline-block'}),
html.Div([
dcc.Graph(id='linear')]),
html.Div([
dcc.Graph(id='linear2')
])])
@app.callback(
dash.dependencies.Output('linear','figure'),
[dash.dependencies.Input('Gender','value'),
dash.dependencies.Input('Sport','value'),
dash.dependencies.Input('Age','value')])
def update_graph(Gender_name,sport_name,age_name):
xl1=xl[xl['Gender'] == Gender_name]
xl2=xl1[xl1['Sport'] == sport_name]
xl3=xl2[xl2['Age'] == age_name]
Total_x=xl3.Date
trace1=go.Bar(x=Total_x,y=age_name?,name='6-12')
trace2=go.Bar(x=Total_x,y=age_name?,name='12-18')
trace3=go.Bar(x=Total_x,y=age_name,name='18-24')
Totallayout=go.Layout(xaxis={'title': 'Year'},
yaxis={'title': 'Participants'},
title= 'Core Player Comparison',
hovermode='closest')
return {'data':[trace2,trace1,trace3],
'layout':[Totallayout]}
我希望有人可以帮助我使用 def 更新图形功能,以便它可以 link 回到我在创建不同轨迹时创建的年龄下拉列表。如果有人能提供帮助,那将不胜感激,谢谢!
示例数据框:
日期运动性别年龄球员核心
2008 瑜伽男 6-12 2308.54 692.562
2008 瑜伽男 13-17 3551.60 1065.480
2008 瑜伽男 18-24 2663.70 799.110
2008 瑜伽男 25-34 3551.60 1065.480
2008 瑜伽男 35-44 2130.96 639.288
想法是创建一个图表,其中 "Players" 或 "Core" 是 Y 轴,日期是 x 轴,年龄是轨迹。
感谢您更新样本df
。我不确定您的目标是什么,但我有数据流过并绘制了 df
图表。这是一个功能示例:
dict_form = {
'Date': [2008, 2008, 2008, 2008, 2008],
'Sport': ['Yoga', 'Yoga', 'Yoga', 'Yoga', 'Yoga'],
'Gender': ['Male', 'Male', 'Male', 'Male', 'Male'],
'Age': ['6-12', '13-17', '18-24', '25-34', '35-44'],
'Players': [2308.54, 3551.60, 2663.70, 3551.60, 2130.96],
'Core': [692.562, 1065.480, 799.110, 1065.480, 639.288],
}
df = pandas.DataFrame.from_dict(dict_form)
app = dash.Dash(__name__)
app.layout = html.Div(children=[
html.Div(children=[
html.H3('Age:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Checklist(
id='Age',
options=[
{'label': i, 'value': i} for i in df['Age']],
values=['18-24']
)
]),
html.Div(children=[
html.H3('Gender:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Dropdown(
id='Gender',
options=[
{'label': 'Male', 'value': 'Male'},
{'label': 'Female', 'value': 'Female'}
],
value='Male'
)
], style={'width': '33%', 'display': 'inline-block'}),
html.H3('Activity:', style={'paddingRight': '30px', 'fontSize': 18}),
dcc.Dropdown(
id='Sport',
options=[
{'label': i, 'value': i} for i in df['Sport']],
value='Yoga'
),
html.Div([
dcc.Graph(id='linear')]),
html.Div([
dcc.Graph(id='linear2')
])
], style={'width': '33%', 'display': 'inline-block'})
@app.callback(
dash.dependencies.Output('linear', 'figure'),
[dash.dependencies.Input('Gender', 'value'),
dash.dependencies.Input('Sport', 'value'),
dash.dependencies.Input('Age', 'values')])
def update_graph(gender_name, sport_name, age_name):
df1 = df[df['Gender'] == gender_name]
df2 = df1[df1['Sport'] == sport_name]
df3 = df2[df2['Age'].isin(age_name)]
total_x = df3.Age
trace1 = go.Bar(x=total_x, y=df3['Players'], name='Players')
trace2 = go.Bar(x=total_x, y=df3['Core'], name='Core')
total_layout = go.Layout(xaxis={'title': 'Year'},
yaxis={'title': 'Participants'},
title='Core Player Comparison',
hovermode='closest')
return {'data': [trace2, trace1],
'layout': [total_layout]}
if __name__ == '__main__':
app.run_server(debug=True, threaded=True)
这是图表的屏幕截图: