如何使用 tf.estimator.DNNClassifier(Scikit Flow?)
How To Use tf.estimator.DNNClassifier (Scikit Flow?)
有人可以指点我 tf.estimator.DNNClassifier(最初是 skflow)的基本工作示例吗?
由于我熟悉 Sklearn,我很高兴在 this blog 上阅读有关 Scikit Flow 的内容。特别是 api 看起来和 SK-Learn 几乎一样。
但是,我在使用博客中的代码时遇到了问题。
然后我读了Scikit Flow Github that it moved to tensorflow/tensorflow/contrib/learn/python/learn。
经过进一步调查,我发现 tf.contrib.learn.DNNClassifier moved to tf.estimator.DNNClassifier。
但是,现在 api 估计器似乎与 sklearn 分类器完全不同。
如果有人能指出一个基本的工作示例,我将不胜感激。
这是上面博客中的代码。
import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))
print("Accuracy: %f" % score)
API 是 changed very much, so now you can do something like this (an official example is available here):
import tensorflow as tf
from sklearn import datasets, metrics
def train_input_fn(features, labels, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
return dataset.shuffle(1000).repeat().batch(batch_size)
iris = datasets.load_iris()
train_x = {
'0': iris.data[:, 0],
'1': iris.data[:, 1],
'2': iris.data[:, 2],
'3': iris.data[:, 3],
}
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
clf = tf.estimator.DNNClassifier(hidden_units=[10, 20, 10], feature_columns=my_feature_columns, n_classes=3)
clf.train(input_fn=lambda: train_input_fn(train_x, iris.target, 32), steps=10000)
preds = list()
for idx, p in enumerate(classifier.predict(input_fn=lambda: train_input_fn(train_x, iris.target, 32))):
preds.append(p['class_ids'][0])
if idx == 99:
break
print(metrics.accuracy_score(iris.target[:100], preds))
但是现在最好像这样使用 TF Keras API:
import tensorflow as tf
from sklearn import datasets, metrics
def train_input_fn(features, labels, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
return dataset.shuffle(1000).repeat().batch(batch_size)
iris = datasets.load_iris()
clf = tf.keras.models.Sequential([
tf.keras.layers.Dense(10, activation='sigmoid'),
tf.keras.layers.Dense(20, activation='sigmoid'),
tf.keras.layers.Dense(10, activation='sigmoid'),
tf.keras.layers.Dense(3, activation='softmax'),
])
clf.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
clf.fit(iris.data, iris.target, batch_size=32)
有人可以指点我 tf.estimator.DNNClassifier(最初是 skflow)的基本工作示例吗?
由于我熟悉 Sklearn,我很高兴在 this blog 上阅读有关 Scikit Flow 的内容。特别是 api 看起来和 SK-Learn 几乎一样。
但是,我在使用博客中的代码时遇到了问题。
然后我读了Scikit Flow Github that it moved to tensorflow/tensorflow/contrib/learn/python/learn。
经过进一步调查,我发现 tf.contrib.learn.DNNClassifier moved to tf.estimator.DNNClassifier。
但是,现在 api 估计器似乎与 sklearn 分类器完全不同。
如果有人能指出一个基本的工作示例,我将不胜感激。
这是上面博客中的代码。
import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))
print("Accuracy: %f" % score)
API 是 changed very much, so now you can do something like this (an official example is available here):
import tensorflow as tf
from sklearn import datasets, metrics
def train_input_fn(features, labels, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
return dataset.shuffle(1000).repeat().batch(batch_size)
iris = datasets.load_iris()
train_x = {
'0': iris.data[:, 0],
'1': iris.data[:, 1],
'2': iris.data[:, 2],
'3': iris.data[:, 3],
}
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
clf = tf.estimator.DNNClassifier(hidden_units=[10, 20, 10], feature_columns=my_feature_columns, n_classes=3)
clf.train(input_fn=lambda: train_input_fn(train_x, iris.target, 32), steps=10000)
preds = list()
for idx, p in enumerate(classifier.predict(input_fn=lambda: train_input_fn(train_x, iris.target, 32))):
preds.append(p['class_ids'][0])
if idx == 99:
break
print(metrics.accuracy_score(iris.target[:100], preds))
但是现在最好像这样使用 TF Keras API:
import tensorflow as tf
from sklearn import datasets, metrics
def train_input_fn(features, labels, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
return dataset.shuffle(1000).repeat().batch(batch_size)
iris = datasets.load_iris()
clf = tf.keras.models.Sequential([
tf.keras.layers.Dense(10, activation='sigmoid'),
tf.keras.layers.Dense(20, activation='sigmoid'),
tf.keras.layers.Dense(10, activation='sigmoid'),
tf.keras.layers.Dense(3, activation='softmax'),
])
clf.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
clf.fit(iris.data, iris.target, batch_size=32)