在 statsmodels OLS 中使用分类变量 class

Using categorical variables in statsmodels OLS class

我想使用 statsmodels OLS class 创建多元回归模型。考虑以下数据集:

import statsmodels.api as sm
import pandas as pd
import numpy as np

dict = {'industry': ['mining', 'transportation', 'hospitality', 'finance', 'entertainment'],
  'debt_ratio':np.random.randn(5), 'cash_flow':np.random.randn(5) + 90} 

df = pd.DataFrame.from_dict(dict)

x = data[['debt_ratio', 'industry']]
y = data['cash_flow']

def reg_sm(x, y):
    x = np.array(x).T
    x = sm.add_constant(x)
    results = sm.OLS(endog = y, exog = x).fit()
    return results

当我运行以下代码时:

reg_sm(x, y)

我收到以下错误:

TypeError: '>=' not supported between instances of 'float' and 'str'

我已经尝试将 industry 变量转换为分类变量,但我仍然遇到错误。我别无选择。

您在转换为分类数据类型方面走在正确的道路上。但是,一旦将 DataFrame 转换为 NumPy 数组,就会得到一个 object dtype(NumPy 数组作为一个整体是一种统一类型)。这意味着个体价值仍然是 str 的基础,回归肯定不会喜欢。

你可能想要做的是 dummify this feature. Instead of factorizing 它,这将有效地将变量视为连续的,你想保持某种分类的外表:

>>> import statsmodels.api as sm
>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(444)
>>> data = {
...     'industry': ['mining', 'transportation', 'hospitality', 'finance', 'entertainment'],
...    'debt_ratio':np.random.randn(5),
...    'cash_flow':np.random.randn(5) + 90
... }
>>> data = pd.DataFrame.from_dict(data)
>>> data = pd.concat((
...     data,
...     pd.get_dummies(data['industry'], drop_first=True)), axis=1)
>>> # You could also use data.drop('industry', axis=1)
>>> # in the call to pd.concat()
>>> data
         industry  debt_ratio  cash_flow  finance  hospitality  mining  transportation
0          mining    0.357440  88.856850        0            0       1               0
1  transportation    0.377538  89.457560        0            0       0               1
2     hospitality    1.382338  89.451292        0            1       0               0
3         finance    1.175549  90.208520        1            0       0               0
4   entertainment   -0.939276  90.212690        0            0       0               0

现在您有了 statsmodels 可以更好地使用的数据类型。 drop_first 的目的是为了避免 dummy trap:

>>> y = data['cash_flow']
>>> x = data.drop(['cash_flow', 'industry'], axis=1)
>>> sm.OLS(y, x).fit()
<statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x115b87cf8>

最后,只是一个小提示:它有助于尝试避免使用隐藏内置对象类型的名称来命名引用,例如 dict.

我也有这个问题,有很多列需​​要被视为分类,这让处理 dummify 变得很烦人。转换为 string 对我不起作用。

对于任何在不对数据进行单热编码的情况下寻找解决方案的人, R 接口提供了一个很好的方法来做到这一点:

import statsmodels.formula.api as smf
import pandas as pd
import numpy as np

dict = {'industry': ['mining', 'transportation', 'hospitality', 'finance', 'entertainment'],
  'debt_ratio':np.random.randn(5), 'cash_flow':np.random.randn(5) + 90} 

df = pd.DataFrame.from_dict(dict)

x = df[['debt_ratio', 'industry']]
y = df['cash_flow']

# NB. unlike sm.OLS, there is "intercept" term is included here
smf.ols(formula="cash_flow ~ debt_ratio + C(industry)", data=df).fit()

参考: https://www.statsmodels.org/stable/example_formulas.html#categorical-variables

这只是分类变量的类似案例的另一个示例,与 R(芬兰汉肯)中给出的统计课程相比,它给出了正确的结果。

import wooldridge as woo
import statsmodels.formula.api as smf
import numpy as np

df = woo.dataWoo('beauty')
print(df.describe)

df['abvavg'] = (df['looks']>=4).astype(int) # good looking
df['belavg'] = (df['looks']<=2).astype(int) # bad looking

df_female = df[df['female']==1]
df_male = df[df['female']==0]

results_female = smf.ols(formula = 'np.log(wage) ~ belavg + abvavg',data=df_female).fit()
print(f"FEMALE results, summary \n {results_female.summary()}")

results_male = smf.ols(formula = 'np.log(wage) ~ belavg + abvavg',data=df_male).fit()
print(f"MALE results, summary \n {results_male.summary()}")

特维辛,马库斯