Sklearn pipeline throws ValueError: too many values to unpack (expected 2)
Sklearn pipeline throws ValueError: too many values to unpack (expected 2)
我正在尝试创建一个 sklearn 管道,它将首先提取文本中的平均字长,然后使用 StandardScaler
.
对其进行标准化
自定义转换器
class AverageWordLengthExtractor(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def average_word_length(self, text):
return np.mean([len(word) for word in text.split( )])
def fit(self, x, y=None):
return self
def transform(self, x , y=None):
return pd.DataFrame(pd.Series(x).apply(self.average_word_length))
我的目标就是实现这个目标。 X 是带有文本值的 pandas 系列。这行得通。
extractor=AverageWordLengthExtractor()
print(extractor.transform(X[:10]))
sc=StandardScaler()
print(sc.fit_transform(extractor.transform(X[:10])))
我为此创建的管道是。
pipeline = Pipeline([('text_length', AverageWordLengthExtractor(), 'scale', StandardScaler())])
但是 pipeline.fit_transform()
产生以下错误。
Traceback (most recent call last):
File "custom_transformer.py", line 48, in <module>
main()
File "custom_transformer.py", line 43, in main
'scale', StandardScaler())])
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 114, in __init__
self._validate_steps()
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 146, in _validate_steps
names, estimators = zip(*self.steps)
ValueError: too many values to unpack (expected 2)
我认为您需要将 fit_transform
方法添加到您的 class AverageWordLengthExtractor
。
你的括号在错误的位置/你在创建管道时缺少括号,应该是一个元组列表:
pipeline = Pipeline([
('text_length', AverageWordLengthExtractor()),
('scale', StandardScaler())
])
我正在尝试创建一个 sklearn 管道,它将首先提取文本中的平均字长,然后使用 StandardScaler
.
自定义转换器
class AverageWordLengthExtractor(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def average_word_length(self, text):
return np.mean([len(word) for word in text.split( )])
def fit(self, x, y=None):
return self
def transform(self, x , y=None):
return pd.DataFrame(pd.Series(x).apply(self.average_word_length))
我的目标就是实现这个目标。 X 是带有文本值的 pandas 系列。这行得通。
extractor=AverageWordLengthExtractor()
print(extractor.transform(X[:10]))
sc=StandardScaler()
print(sc.fit_transform(extractor.transform(X[:10])))
我为此创建的管道是。
pipeline = Pipeline([('text_length', AverageWordLengthExtractor(), 'scale', StandardScaler())])
但是 pipeline.fit_transform()
产生以下错误。
Traceback (most recent call last):
File "custom_transformer.py", line 48, in <module>
main()
File "custom_transformer.py", line 43, in main
'scale', StandardScaler())])
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 114, in __init__
self._validate_steps()
File "/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py", line 146, in _validate_steps
names, estimators = zip(*self.steps)
ValueError: too many values to unpack (expected 2)
我认为您需要将 fit_transform
方法添加到您的 class AverageWordLengthExtractor
。
你的括号在错误的位置/你在创建管道时缺少括号,应该是一个元组列表:
pipeline = Pipeline([
('text_length', AverageWordLengthExtractor()),
('scale', StandardScaler())
])