如何调整 Seaborn 箱线图中胡须的大小?

How can I adjust the size of the whiskers in a Seaborn boxplot?

我想在下面的箱线图中使胡须线更宽。

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.DataFrame({'Data': np.random.random(100), 'Type':['Category']*100})

fig, ax = plt.subplots()

# Plot boxplot setting the whiskers to the 5th and 95th percentiles
sns.boxplot(x='Type', y='Data', data=data, color = 'gray', whis = [5,95])

# Adjust boxplot and whisker line properties
for p, artist in enumerate(ax.artists):
    artist.set_edgecolor('blue')
    for q in range(p*6, p*6+6):
        line = ax.lines[q]
        line.set_color('pink')

我知道如何调整胡须的颜色和线宽,但我一直想不出如何增加胡须的长度。我最接近的是尝试使用 line.set_xdata([q/60-0.5, q/60+0.5]) 但我收到错误

ValueError: shape mismatch: objects cannot be broadcast to a single shape    

理想情况下,我希望胡须百分位数线与框的宽度相同。我该怎么做?

正如您所注意到的,每个框绘制了 6 条线(因此您的 p*6 索引)。

索引为 p*6+4 的线具有框的宽度(即框内的中线)。所以我们可以用它来设置其他线的宽度。

您要更改的行具有索引 p*6+2p*6+3

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.DataFrame({'Data': np.random.random(100), 'Type':['Category']*100})

fig, ax = plt.subplots()

# Plot boxplot setting the whiskers to the 5th and 95th percentiles
sns.boxplot(x='Type', y='Data', data=data, color = 'gray', whis = [5,95])

# Adjust boxplot and whisker line properties
for p, artist in enumerate(ax.artists):
    artist.set_edgecolor('blue')
    for q in range(p*6, p*6+6):
        line = ax.lines[q]
        line.set_color('pink')

    ax.lines[p*6+2].set_xdata(ax.lines[p*6+4].get_xdata())
    ax.lines[p*6+3].set_xdata(ax.lines[p*6+4].get_xdata())

这也适用于包含多个框的示例:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="whitegrid")
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)

# Adjust boxplot and whisker line properties
for p, artist in enumerate(ax.artists):
    artist.set_edgecolor('blue')
    for q in range(p*6, p*6+6):
        line = ax.lines[q]
        line.set_color('pink')

    ax.lines[p*6+2].set_xdata(ax.lines[p*6+4].get_xdata())
    ax.lines[p*6+3].set_xdata(ax.lines[p*6+4].get_xdata())