python gensim word2vec gives typeerror TypeError: object of type 'generator' has no len() on custom dataclass

python gensim word2vec gives typeerror TypeError: object of type 'generator' has no len() on custom dataclass

我正在尝试让 word2vec 在 python3 中工作,但是由于我的数据集太大而无法轻松放入内存,因此我通过迭代器(从 zip 文件)加载它。但是,当我 运行 它时,我收到错误

Traceback (most recent call last):
  File "WordModel.py", line 85, in <module>
    main()
  File "WordModel.py", line 15, in main
    word2vec = gensim.models.Word2Vec(data,workers=cpu_count())
  File "/home/thijser/.local/lib/python3.7/site-packages/gensim/models/word2vec.py", line 783, in __init__
    fast_version=FAST_VERSION)
  File "/home/thijser/.local/lib/python3.7/site-packages/gensim/models/base_any2vec.py", line 759, in __init__
    self.build_vocab(sentences=sentences, corpus_file=corpus_file, trim_rule=trim_rule)
  File "/home/thijser/.local/lib/python3.7/site-packages/gensim/models/base_any2vec.py", line 936, in build_vocab
    sentences=sentences, corpus_file=corpus_file, progress_per=progress_per, trim_rule=trim_rule)
  File "/home/thijser/.local/lib/python3.7/site-packages/gensim/models/word2vec.py", line 1591, in scan_vocab
    total_words, corpus_count = self._scan_vocab(sentences, progress_per, trim_rule)
  File "/home/thijser/.local/lib/python3.7/site-packages/gensim/models/word2vec.py", line 1576, in _scan_vocab
    total_words += len(sentence)
TypeError: object of type 'generator' has no len()

代码如下:

import zipfile
import os
from ast import literal_eval

from lxml import etree
import io
import gensim

from multiprocessing import cpu_count


def main():
    data = TrainingData("/media/thijser/Data/DataSets/uit2")
    print(len(data))
    word2vec = gensim.models.Word2Vec(data,workers=cpu_count())
    word2vec.save('word2vec.save')




class TrainingData:

    size=-1

    def __init__(self, dirname):
        self.data_location = dirname

    def __len__(self):
        if self.size<0: 

            for zipfile in self.get_zips_in_folder(self.data_location): 
                for text_file in self.get_files_names_from_zip(zipfile):
                    self.size=self.size+1
        return self.size            

    def __iter__(self): #might not fit in memory otherwise
        yield self.get_data()

    def get_data(self):


        for zipfile in self.get_zips_in_folder(self.data_location): 
            for text_file in self.get_files_names_from_zip(zipfile):
                yield self.preproccess_text(text_file)


    def stripXMLtags(self,text):

        tree=etree.parse(text)
        notags=etree.tostring(tree, encoding='utf8', method='text')
        return notags.decode("utf-8") 

    def remove_newline(self,text):
        text.replace("\n"," ")
        return text

    def preproccess_text(self,text):
        text=self.stripXMLtags(text)
        text=self.remove_newline(text)

        return text




    def get_files_names_from_zip(self,zip_location):
        files=[]
        archive = zipfile.ZipFile(zip_location, 'r')

        for info in archive.infolist():
            files.append(archive.open(info.filename))

        return files

    def get_zips_in_folder(self,location):
       zip_files = []
       for root, dirs, files in os.walk(location):
            for name in files:
                if name.endswith((".zip")): 
                    filepath=root+"/"+name
                    zip_files.append(filepath)

       return zip_files

main()


for d in data:
    for dd in d :
        print(type(dd))

确实告诉我 dd 是字符串类型并且包含正确的预处理字符串(每个字符串的长度在 50 到 5000 个单词之间)。

讨论后更新:

您的 TrainingData class __iter__() 函数没有提供一个 returns 每个文本依次生成的生成器,而是一个 returns 一个生成器单个 other 发电机。 (yield 的级别太多了。)这不是 Word2Vec 所期望的。

__iter__() 方法的主体更改为简单...

return self.get_data()

...因此 __iter__() 是您的 get_data() 的同义词,而 returns 与 get_data() 相同的文本生成器应该帮助。

原回答:

您没有显示 get_data() 中引用的 TrainingData.preproccess_text()(原文如此)方法,这是实际创建数据 Word2Vec 正在处理的方法。而且,正是这些数据产生了错误。

Word2Vec 要求其 sentences 语料库是一个 可迭代序列 (生成器适合),其中每个单独的项目都是 字符串标记列表

从那个错误来看,您的 TrainingData 序列中的各个项目本身可能是生成器,而不是具有可读 len() 的列表。

(另外,如果您选择在那里使用生成器,因为单个文本可能非常非常长,请注意 gensim Word2Vec 和相关的 classes 仅针对单个文本进行训练长度最多为 10000 个单词标记。超过第 10000 个单词的任何单词都将被忽略。如果这是一个问题,您的源文本应预先分解为 10000 个标记或更少的单独文本。)