自定义函数转换器未按预期执行 - sklearn 管道
Custom function transformer not performing as expected - sklearn pipeline
我正在为 scikit-learn Pipeline 编写自定义转换器。转换器似乎独立工作,fit()
和 transform()
方法单独工作,但是当我将它包含在管道中时,它会引发错误,指出:
AttributeError: 'NoneType' object has no attribute 'transform'
作为参考,这是我的自定义转换器的代码:
class feature_union(TransformerMixin, BaseEstimator):
def __init__(self):
self.Xt = None
self.PI2_categories = ['D3', 'D4', 'A6', 'A5', 'D1', 'D2', 'A8', 'B2', 'E1',
'A1', 'A2', 'C1', 'C4', 'A7', 'C2', 'C3', 'A4', 'A3', 'B1']
def fit(self, X, y=None):
product_columns = ['Product_Info_1', 'Product_Info_3', 'Product_Info_5', 'Product_Info_6', 'Product_Info_7'] + self.PI2_categories
product_idx = [col for col in range(X.shape[1]) if X.columns[col] in product_columns]
personal_columns = ['Ins_Age', 'Ht', 'Wt', 'BMI']
personal_idx = [col for col in range(X.shape[1]) if X.columns[col] in personal_columns]
medical_hist_columns = ["Medical_History_{}".format(x) for x in range(1, 42, 1)]
medical_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_hist_columns]
family_hist_columns = ["Family_Hist_{}".format(x) for x in range(1, 6, 1)]
family_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in family_hist_columns]
insured_info_columns = ["InsuredInfo_{}".format(x) for x in range(1, 8, 1)]
insured_info_idx = [col for col in range(X.shape[1]) if X.columns[col] in insured_info_columns]
insurance_hist_columns = ["Insurance_History_{}".format(x) for x in range(1, 10, 1)]
insurance_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in insurance_hist_columns]
employment_info_columns = ["Employment_Info_{}".format(x) for x in range(1, 7, 1)]
employment_info_idx = [col for col in range(X.shape[1]) if X.columns[col] in employment_info_columns]
medical_keyword_columns = ["Medical_Keyword_{}".format(x) for x in range(1, 49, 1)]
medical_keyword_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_keyword_columns]
medical_keyword_columns = ["Medical_Keyword_{}".format(x) for x in range(1, 49, 1)]
medical_keyword_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_keyword_columns]
get_original_features = lambda X: X
get_product_columns = lambda X: X[:, product_idx]
get_personal_columns = lambda X: X[:, personal_idx]
get_medical_hist_columns = lambda X: X[:, medical_hist_idx]
get_family_hist_columns = lambda X: X[:, family_hist_idx]
get_insured_info_columns = lambda X: X[:, insured_info_idx]
get_insurance_hist_columns = lambda X: X[:, insurance_hist_idx]
get_employment_info_columns = lambda X: X[:, employment_info_idx]
get_medical_keyword_columns = lambda X: X[:, medical_keyword_idx]
get_medical_and_family = lambda X: X[:, medical_keyword_idx + medical_hist_idx + family_hist_idx]
union = FeatureUnion([
("original_features", FunctionTransformer(get_original_features)),
("product_interaction", Pipeline([('select_product', FunctionTransformer(get_product_columns)),
('product_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("personal_interaction", Pipeline([('select_personal', FunctionTransformer(get_personal_columns)),
('personal_interaction', PolynomialFeatures(4, include_bias=False, interaction_only=True))
])),
("medical_hist_interaction", Pipeline([('select_medical', FunctionTransformer(get_medical_hist_columns)),
('medical_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("family_hist_interaction", Pipeline([('select_family_hist', FunctionTransformer(get_family_hist_columns)),
('family_hist_interaction', PolynomialFeatures(5, include_bias=False, interaction_only=True))
])),
("insured_info_interaction", Pipeline([('select_insured_info', FunctionTransformer(get_insured_info_columns)),
('insured_info_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("insurance_hist_interaction", Pipeline([('select_insurance_hist', FunctionTransformer(get_insurance_hist_columns)),
('insurance_hist_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("employment_info_interaction", Pipeline([('select_employment_info', FunctionTransformer(get_employment_info_columns)),
('employment_info_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("medical_keyword_interaction", Pipeline([('select_medical_keyword', FunctionTransformer(get_medical_keyword_columns)),
('medical_keyword_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
])
Xt = union.fit_transform(X)
return self.Xt
def transform(self, X, y=None):
Xt = self.Xt
return Xt
当我在这样的管道中使用它时:
pipeline_feat_union = Pipeline([('preprocess', preprocess()),
('feat_union', feature_union()),
('classifier', GaussianNB())])
它引发了以下错误:
AttributeError: 'NoneType' object has no attribute 'transform'
我运行陷入同样的问题。 GuassianNB() class 没有定义 transform
方法。
但是如果您在管道中包含 classifier,则根本不需要使用 t运行sform 方法。您需要的唯一两种方法是 fit
方法和 predict
方法。
pipeline_feat_union.fit(X_train, y_train)
pipeline_feat_union.predict(X_train)
在为 sklearn 管道编写自定义转换器时,您的 fit()
方法需要 return self
或具有类似接口的东西,例如:
class Intercept(BaseEstimator, TransformerMixin):
def __init__(self):
# maybe do some initialization here, if your transformer needs it
def fit(self, X,y=None):
# Do something here to "fit" your transformer
return self # Always return self or something with a similar interface.
def transform(self, X,y=None):
# apply your transformation here
return some_awesome_transformation(X)
作为参考,this is most likely the line that is throwing the exception(这很有用,因为您可以在 fit()
方法中看到为什么需要 return self
)
我正在为 scikit-learn Pipeline 编写自定义转换器。转换器似乎独立工作,fit()
和 transform()
方法单独工作,但是当我将它包含在管道中时,它会引发错误,指出:
AttributeError: 'NoneType' object has no attribute 'transform'
作为参考,这是我的自定义转换器的代码:
class feature_union(TransformerMixin, BaseEstimator):
def __init__(self):
self.Xt = None
self.PI2_categories = ['D3', 'D4', 'A6', 'A5', 'D1', 'D2', 'A8', 'B2', 'E1',
'A1', 'A2', 'C1', 'C4', 'A7', 'C2', 'C3', 'A4', 'A3', 'B1']
def fit(self, X, y=None):
product_columns = ['Product_Info_1', 'Product_Info_3', 'Product_Info_5', 'Product_Info_6', 'Product_Info_7'] + self.PI2_categories
product_idx = [col for col in range(X.shape[1]) if X.columns[col] in product_columns]
personal_columns = ['Ins_Age', 'Ht', 'Wt', 'BMI']
personal_idx = [col for col in range(X.shape[1]) if X.columns[col] in personal_columns]
medical_hist_columns = ["Medical_History_{}".format(x) for x in range(1, 42, 1)]
medical_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_hist_columns]
family_hist_columns = ["Family_Hist_{}".format(x) for x in range(1, 6, 1)]
family_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in family_hist_columns]
insured_info_columns = ["InsuredInfo_{}".format(x) for x in range(1, 8, 1)]
insured_info_idx = [col for col in range(X.shape[1]) if X.columns[col] in insured_info_columns]
insurance_hist_columns = ["Insurance_History_{}".format(x) for x in range(1, 10, 1)]
insurance_hist_idx = [col for col in range(X.shape[1]) if X.columns[col] in insurance_hist_columns]
employment_info_columns = ["Employment_Info_{}".format(x) for x in range(1, 7, 1)]
employment_info_idx = [col for col in range(X.shape[1]) if X.columns[col] in employment_info_columns]
medical_keyword_columns = ["Medical_Keyword_{}".format(x) for x in range(1, 49, 1)]
medical_keyword_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_keyword_columns]
medical_keyword_columns = ["Medical_Keyword_{}".format(x) for x in range(1, 49, 1)]
medical_keyword_idx = [col for col in range(X.shape[1]) if X.columns[col] in medical_keyword_columns]
get_original_features = lambda X: X
get_product_columns = lambda X: X[:, product_idx]
get_personal_columns = lambda X: X[:, personal_idx]
get_medical_hist_columns = lambda X: X[:, medical_hist_idx]
get_family_hist_columns = lambda X: X[:, family_hist_idx]
get_insured_info_columns = lambda X: X[:, insured_info_idx]
get_insurance_hist_columns = lambda X: X[:, insurance_hist_idx]
get_employment_info_columns = lambda X: X[:, employment_info_idx]
get_medical_keyword_columns = lambda X: X[:, medical_keyword_idx]
get_medical_and_family = lambda X: X[:, medical_keyword_idx + medical_hist_idx + family_hist_idx]
union = FeatureUnion([
("original_features", FunctionTransformer(get_original_features)),
("product_interaction", Pipeline([('select_product', FunctionTransformer(get_product_columns)),
('product_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("personal_interaction", Pipeline([('select_personal', FunctionTransformer(get_personal_columns)),
('personal_interaction', PolynomialFeatures(4, include_bias=False, interaction_only=True))
])),
("medical_hist_interaction", Pipeline([('select_medical', FunctionTransformer(get_medical_hist_columns)),
('medical_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("family_hist_interaction", Pipeline([('select_family_hist', FunctionTransformer(get_family_hist_columns)),
('family_hist_interaction', PolynomialFeatures(5, include_bias=False, interaction_only=True))
])),
("insured_info_interaction", Pipeline([('select_insured_info', FunctionTransformer(get_insured_info_columns)),
('insured_info_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("insurance_hist_interaction", Pipeline([('select_insurance_hist', FunctionTransformer(get_insurance_hist_columns)),
('insurance_hist_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("employment_info_interaction", Pipeline([('select_employment_info', FunctionTransformer(get_employment_info_columns)),
('employment_info_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
("medical_keyword_interaction", Pipeline([('select_medical_keyword', FunctionTransformer(get_medical_keyword_columns)),
('medical_keyword_interaction', PolynomialFeatures(2, include_bias=False, interaction_only=True))
])),
])
Xt = union.fit_transform(X)
return self.Xt
def transform(self, X, y=None):
Xt = self.Xt
return Xt
当我在这样的管道中使用它时:
pipeline_feat_union = Pipeline([('preprocess', preprocess()),
('feat_union', feature_union()),
('classifier', GaussianNB())])
它引发了以下错误:
AttributeError: 'NoneType' object has no attribute 'transform'
我运行陷入同样的问题。 GuassianNB() class 没有定义 transform
方法。
但是如果您在管道中包含 classifier,则根本不需要使用 t运行sform 方法。您需要的唯一两种方法是 fit
方法和 predict
方法。
pipeline_feat_union.fit(X_train, y_train)
pipeline_feat_union.predict(X_train)
在为 sklearn 管道编写自定义转换器时,您的 fit()
方法需要 return self
或具有类似接口的东西,例如:
class Intercept(BaseEstimator, TransformerMixin):
def __init__(self):
# maybe do some initialization here, if your transformer needs it
def fit(self, X,y=None):
# Do something here to "fit" your transformer
return self # Always return self or something with a similar interface.
def transform(self, X,y=None):
# apply your transformation here
return some_awesome_transformation(X)
作为参考,this is most likely the line that is throwing the exception(这很有用,因为您可以在 fit()
方法中看到为什么需要 return self
)