100 个训练示例是否足以使用 spacy 训练自定义 NER?

Is 100 training examples sufficient for training custom NER using spacy?

我已经为姓名数据训练了 NER 模型。我生成了一些包含人名的随机句子。我生成了大约 70 个句子并以 spacy 的格式注释了数据。

我使用空白 'en' 模型和 'en_core_web_sm' 训练了自定义 NER,但是当我在任何字符串上进行测试时。它能够在很少的例子中检测到。

这个例子数量不够吗?

My data looks like this -:

[("'Hi, I am looking for a house on rent for a year. Best Regards, Rajesh',\r",
  {'entities': [(56, 63, 'name')]}),
 ("'Hello everyone, I am Gunjan Arora',\r", {'entities': [(22, 34, 'name')]}),
 ("'Greetings!, I am 34 years old. I want a car for my wife Bella Roy',\r",
  {'entities': [(60, 69, 'name')]}),
 ("'Heyo, I lived with my family comprises 4 people and myself Randy Lao',\r",
  {'entities': [(60, 69, 'name')]}),
 ("'I am Geetanjali. ',\r", {'entities': [(6, 16, 'name')]})]

I have generated some 70 examples like this.

Losses during training -:

 - 1.Losses {'ner': 6.307317615201415} 
 - 2.Losses {'ner': 11.182436657139132}
 - 3.Losses {'ner': 6.014345924849759}
 - 4.Losses {'ner': 6.442589285506237}
 - 5.Losses {'ner': 5.328383899880891}
 - 6.Losses {'ner': 1.706726450400089}
 - 7.Losses {'ner': 3.9960324752880005}
 - 8.Losses {'ner': 5.415169572852782}

These losses when I am using blank 'en' model

请推荐。

我想检测姓名,因为预训练模型本身在大多数情况下也无法检测姓名。

为了获得更好的结果,您需要生成更多示例,70 个示例不足以训练您的模型,尽管它可能适用于 non-sophisticated 问题。 我建议将生成的示例增加三倍以获得合适的结果