如何使 coq 简化蕴涵假设中的表达式

How to make coq simplify expressions inside an implication hypothesis

我试图证明以下引理:

Inductive even : nat → Prop :=
| ev_0 : even 0
| ev_SS (n : nat) (H : even n) : even (S (S n)).

Lemma even_Sn_not_even_n : forall n,
    even (S n) <-> not (even n).
Proof.
  intros n. split.
  + intros H. unfold not. intros H1. induction H1 as [|n' E' IHn].
    - inversion H.
    - inversion_clear H. apply IHn in H0. apply H0.
  + unfold not. intros H. induction n as [|n' E' IHn].
    -
Qed.

这是我最后得到的:

1 subgoal (ID 173)

H : even 0 -> False
============================
even 1

我希望 coq 计算 "even 0" 为真,"even 1" 为假。我尝试了 simplapply ev_0 in H.,但它们给出了错误。怎么办?

回答题目

simpl in H.

真实答案

上面的代码是行不通的。

《逻辑基础》一书中 even 的定义是:

Inductive even : nat → Prop :=
| ev_0 : even 0
| ev_SS (n : nat) (H : even n) : even (S (S n)).

even 0 是 Prop,不是布尔值。看起来您混淆了类型 TrueFalse 以及布尔值 truefalse。它们是完全不同的东西,并且在 Coq 的逻辑下不可互换。简而言之,even 0 不会简化为 trueTrue 或任何东西。它只是 even 0. 如果你想证明 even 0 在逻辑上是正确的,你应该构造一个该类型的值。

我不记得当时在 LF 中有哪些战术可用,但这里有一些可能性:

(* Since you know `ev_0` is a value of type `even 0`,
   construct `False` from H and destruct it.
   This is an example of forward proof. *)
set (contra := H ev_0). destruct contra.

(* ... or, in one step: *)
destruct (H ev_0).

(* We all know `even 1` is logically false,
   so change the goal to `False` and work from there.
   This is an example of backward proof. *)
exfalso. apply H. apply ev_0.