RandomSearchCV 超级慢 - 故障排除性能增强

RandomSearchCV super slow - troubleshooting performance enhancement

我一直在研究以下用于随机森林分类的​​脚本,并且 运行 遇到了一些与随机搜索性能相关的问题 - 它需要很长时间才能完成,我想知道是否有要么我做错了什么,要么我可以做得更好以使其更快。

任何人都可以建议 speed/performance 我可以做的改进吗?

提前致谢!

forest_start_time = time.time()

model = RandomForestClassifier()
param_grid = {
    'bootstrap': [True, False],
    'max_depth': [80, 90, 100, 110],
    'max_features': [2, 3],
    'min_samples_leaf': [3, 4, 5],
    'min_samples_split': [8, 10, 12],
    'n_estimators': [200, 300, 500, 1000]
}

bestforest = RandomizedSearchCV(estimator = model, 
                                param_distributions = param_grid, 
                                cv = 3, n_iter = 10, 
                                n_jobs = available_processor_count)

bestforest.fit(train_features, train_labels.ravel())
forest_score = bestforest.score(test_features, test_labels.ravel())
print(forest_score)
forest_end_time = time.time()
forest_duration = forest_start_time-forest_end_time

加快速度的唯一方法是 1) 减少功能 or/and 使用更多 CPU 内核 n_jobs = -1:

bestforest = RandomizedSearchCV(estimator = model, 
                                param_distributions = param_grid, 
                                cv = 3, n_iter = 10, 
                                n_jobs = -1)