根据类似于 np.where 的字典替换 spark 数据框中的列值

replace column values in spark dataframe based on dictionary similar to np.where

我的数据框看起来像 -

no          city         amount   
1           Kenora        56%
2           Sudbury       23%
3           Kenora        71%
4           Sudbury       41%
5           Kenora        33%
6           Niagara       22%
7           Hamilton      88%

共有92M条记录。我希望我的数据框看起来像 -

no          city         amount      new_city
1           Kenora        56%           X
2           Niagara       23%           X       
3           Kenora        71%           X
4           Sudbury       41%           Sudbury       
5           Ottawa        33%           Ottawa
6           Niagara       22%           X
7           Hamilton      88%           Hamilton

使用 python 我可以管理它(使用 np.where)但在 pyspark 中没有得到任何结果。有帮助吗?

到目前为止我已经完成了 -

#create dictionary
city_dict = {'Kenora':'X','Niagara':'X'}

mapping_expr  = create_map([lit(x) for x in chain(*city_dict .items())])

#lookup and replace 
df= df.withColumn('new_city', mapping_expr[df['city']])

#But it gives me wrong results.

df.groupBy('new_city').count().show()

new_city    count
   X          2
  null        3

为什么给我空值?

问题是 mapping_expr 将 return null 用于未包含在 city_dict 中的任何城市。如果 mapping_expr return 是 null 值:

,则快速解决方法是使用 coalesce 到 return city
from pyspark.sql.functions import coalesce

#lookup and replace 
df1= df.withColumn('new_city', coalesce(mapping_expr[df['city']], df['city']))
df1.show()
#+---+--------+------+--------+
#| no|    city|amount|new_city|
#+---+--------+------+--------+
#|  1|  Kenora|   56%|       X|
#|  2| Sudbury|   23%| Sudbury|
#|  3|  Kenora|   71%|       X|
#|  4| Sudbury|   41%| Sudbury|
#|  5|  Kenora|   33%|       X|
#|  6| Niagara|   22%|       X|
#|  7|Hamilton|   88%|Hamilton|
#+---+--------+------+--------+

df1.groupBy('new_city').count().show()
#+--------+-----+
#|new_city|count|
#+--------+-----+
#|       X|    4|
#|Hamilton|    1|
#| Sudbury|    2|
#+--------+-----+

但是,如果其中一个替换值是 null,上述方法将失败。

在这种情况下,更简单的替代方法可能是使用 pyspark.sql.DataFrame.replace():

首先使用 withColumn 创建 new_city 作为 city 列值的副本。

df.withColumn("new_city", df["city"])\
    .replace(to_replace=city_dict.keys(), value=city_dict.values(), subset="new_city")\
    .groupBy('new_city').count().show()
#+--------+-----+
#|new_city|count|
#+--------+-----+
#|       X|    4|
#|Hamilton|    1|
#| Sudbury|    2|
#+--------+-----+